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1 Appendix: Numerical Solution and Accuracy

This appendix describes the numerical solution of the model introduced in Section 3 of Guvenen

(2005) and related accuracy issues. Let  denote the aggregate state (K;B;Z) throughout this

appendix. Solving the model amounts to Önding the following functions which are part of the

stationary recursive equilibrium:

1. Value functions (V i (!;)) and decision rules: bi (!;) for each agent i = h; n; and s0 (!;) :

2. Equilibrium bond pricing function, q () ; which clears the bond market.

3. Equilibrium laws of motion K () ; B () consistent with individual decision rules.

Note that there is an interdependence between the functions in 1 to 3 above. There are a

number of nonlinear functional equations to solve in order to obtain these functions, so instead of

attempting to solve them simultaneously, we use an iterative algorithm.

SpeciÖcally, we Örst solve each agentís dynamic programming problem with initial guesses for

q () and laws of motion. Note that RS (K;Z) and W (K;Z) are easily determined by the FOCs

of the Örmís problem. Moreover, to our knowledge, this is the Örst attempt to numerically solve

a dynamic program with Epstein-Zin preferences. Then we use the decision rules to Önd a bond

pricing function which clears the market and update the old value of q () : Similarly, we update

the laws of motion as will be described below. We go back to the agentís problem and solve it

with the updated values of the equilibrium aggregate functions and continue the procedure until

convergence. The details of the algorithm are as follows:

Step 0: Initialization:

(a) Choose a grid for individual wealth levels: !h; !n: We used 80 grid points for each

wealth variable for the baseline case discussed in the text; using as few as 60 points

and as many as 100 points did not noticeably a§ect the results. There is not much

curvature in the equilibrium functions in K direction, so eight equally-spaced grid

points gave su¢ciently accurate results. On the other hand, the bond price exhibits

substantial variation in B direction close to the borrowing constraints, so we took 30

grid points. We chose the locations of the grid points corresponding to Chebyshev roots

which oversamples near boundaries.

(b) Take an initial guess for q () ; K () and B () : we set q0 () such that neither

asset dominates the other in return state-by-state. For 0K (), we set it equal to the

equilibrium law of motion for capital obtained from a representative-agent economy

with the same calibration of relevant variables, and preferences are calibrated to that

of the stockholder. 0B () is set such that initially, B
0 = B:

(c) Set V i  c > 0; i = h; n; for some constant c:
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Step 1: Solve each agentís dynamic problem:

(a) Let l and j index grid points and iteration number respectively. For each grid point

(!l;l) we Önd the optimal consumption and portfolio choice for the individual. The

portfolio choice of the stockholder is a two-dimensional maximization problem with a

very áat objective function given the small equity premium. The standard optimization

packages which rely on Jacobian or Hessian matrix information, such as the ìnpsolî

subroutine of the NAG library, or similar routines from the IMSL library fail very

frequently. Hence, instead we used a constrained optimization algorithm based on the

one described in Krusell and Smith (1997), which is not very fast but is very robust.

To evaluate the value function o§ the grid points we use interpolation methods. One

advantage of Epstein-Zin preferences is that without borrowing constraints the value

function is linear in individual wealth. Our experience is that, in our model, it is also

almost linear except in the close neighborhood of the constraint. So we were able use

linear interpolation in ! direction, and we used cubic spline interpolation in K and B

directions.

(b) After decision rules are obtained, we apply Howardís policy iteration algorithm to speed

up convergence. This amounts to updating the value function by assuming that the

agent uses the same decision rule for t periods, where we used t = 20:

(c) We iterate on a-b until the maximum percentage deviation in each decision rule is less

than 105 for the stockholder and 106 for the non-stockholder.

Step 2: Update the bond pricing function: We clear the bond market following the algorithm de-

scribed in Krusell and Smith (1997). In iteration j; at each grid point for current state l;

we want to Önd the new bond price qj (l) which clears the markets today, when agents

take qj1 () to apply to all future dates. More speciÖcally, we Örst solve the following

maximization problem for the stockholder and with s0  0 for the non-stockholder:

J (!;; bq) = max
b0; s0


(1 ) (C)' + 


Et

V

!0;0'

 1
'

s:t

C + bqb0 + s0  ! +W (K;Z)

and equations 2 to 5 in the text.

Note that this is not a functional equation. This problem will give rise to bond holding

rules fhB (!;; bq) and fnB (!;; bq) as a function of the current bond price bq: Then, at each
grid point l, we search over the bond price bq to Önd ql such that the bond market clears:

ABS(fhB (!;; q

l ) + (1 )f

n
B (!;; q

)) < 108: We set qj (l) = q
 (l) :

Step 3: Now we update the laws of motion using the updated decision rules: K 0 = jK () =
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sj

!h;


where !h = (K(1 +Re(K;Z))B) =; and B0 = jB () = (1  )b

j;n (!n;)

where !n = B= (1 ) :

Step 4: Iterate on steps 1 to 3 until convergence. We require the maximum deviation in consecutive

updates to be less than 106 for bond pricing function, and 105 for the aggregate laws of

motion.

We then simulate the model through time and assume that the economy reaches a stationary

distribution after 3,000 periods. All the statistics in the paper are averages over 60,000 periods of

simulation.

2 Data Appendix

This appendix describes the data and the construction of variables for the joint distribution of

wealth and consumption reported in Figure 1 and Table 2. The data is from the 1984 wave of the

Panel Study of Income Dynamics and its wealth supplement. We choose the 1984 wave because

it is one of the four waves (along with 1989, 1994 and 1999) which include the wealth supplement

used to construct net worth and Önancial asset variables. Food data (used in the construction

of consumption) is missing in the 1989 wave rendering it unusable. At the time of the writing

of the Örst draft of this paper, the latter two waves came only in early release form with little

documentation. Our attempts to construct consistent deÖnitions of variables proved problematic.

Also, due to increasing reliance on secondary respondents when the household head could not be

contacted (after 1993) data quality seems to have been negatively a§ected (See Haider (2001) for

a discussion).

The basic economic unit in all the calculations is a household. The deÖnition of net worth

and Önancial wealth is the same as given in footnote 6. These deÖnitions also correspond to

Wol§ís (2000) variables from the Survey of Consumer Finances making comparison easier. For

consumption we take expenditures of non-durables and services (denoted Cns) which is the measure

used by Euler equation studies discussed in the text. We construct the CEX measure of Cns
that we take as benchmark following Attanasio and Weber (1995) which is also very close to

the National Income and Product Accounts deÖnition. We exclude durables (vehicle purchases,

household furnishings and equipment), apparel and education expenses since they are likely to

have a signiÖcant durable component.

One problem with using PSID is that it does not include a comprehensive measure of con-

sumption but rather has food expenditures (the sum of food at home, food away from home and

the value of food stamps), and the rent value. On the other hand the Consumer Expenditure

Survey has high quality consumption data but no detailed information on wealth. Using these two

variables we construct a proxy for non-durables and services. Note that we are interested in the

distribution of consumption rather than its absolute level, so we can construct a reasonable proxy

as long as our variables (rent and food) constitute a reasonably Öxed fraction of total consumption

4



10K to 20K 20K to 30K 30K to 40K 40K to 50K 50K to 70K 70K and up
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Income Brackets in 1984 Dollars

Ra
tio

 o
f D

iff
er

en
t C

on
su

m
pt

io
n 

Pr
ox

ie
s t

o 
No

nd
ur

ab
le

s a
nd

 S
er

vi
ce

s

Food and Rent
Rent

Figure 1: The Ratio of Consumption Proxies to Non-Durables and Services from the CEX, 2000

for most households. Figure 1 plots the ratio of rent to Cns for di§erent income brackets from

the CEX. Rent accounts for about 23 to 25 percent of Cns and is relatively stable across di§erent

household groups. Second, together with food expenditures (the dashed line) they account for 41

to 43 percent of total and this ratio is also pretty much Öxed across income groups. We use this

second measure to calculate the corresponding proxy from the PSID.

One last issue is about the calculation of a rental equivalent for homeowners in PSID. To

obtain the rental equivalent from the reported house values for homeowners we compute the user

cost of housing, C = [(1 ) (i+ p)  + ]V  V , where  is the personal income tax rate,
p is the property tax,  is capital gains on house value,  is the maintenance cost, and V is

the house value (c.f., Hendershott and Slemrod, 1983). The Bureau of Economic Analysis (BEA)

releases annual data that measure the value of the stock of owner-occupied nonfarm housing as

well as the imputed rent for owner-occupied non-farm housing. (The imputed rent is calculated

using actual rents on comparable dwellings both from the Census of Housing Survey and the CPI

housing survey.) Dividing the two numbers yields a measure of  equal to 8.8 percent which we

use to calculate the rental equivalents from house values. To see if possible variation in  across

income levels might bias the results, we also constructed the same consumption proxy using only

rentersí information. In this case, the share of consumption of the top 20 percent was 34.2 percent.

We also tried using total consumption expenditures (instead of non-durables and services) as the

measure of consumption. In this case the share of consumption of the top 20 percent increased

from 30.3 percent to 33.6 percent.
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Table 1: Estimation of the Log-Linearized Euler Equation (6) with Post-War U.S.
Data with and without Correcting for Time Variation

V art (ct+1) included? No Yes
N (quarters) ó 4 8 12 16
EIS estim. with Z1 0:11 0.29 0.63 0.48 0.41
(t-stat) (0:94) (1:21) (1:67) (1:94) (1:49)
EIS estim. with Z2 0:09 0.39 0.57 0.40 0.51
(t-stat) (0:97) (1:82) (1:92) (2:28) (2:12)

3 Appendix: Replicating Hall (1988) with Time-varying Condi-
tional Variances

To gain some insight into how serious this problem is, we conducted the following simple experiment

with actual data. We re-ran Hallís regression, closely matching the deÖnition of variables, time

period and construction of variables to existing studies. As a Örst step, we calculate the correlation

of the variance of consumption growth with once lagged interest rate, and surprisingly it is 0:2,
closely matching that in the model. This also provides some further support to the model in terms

of capturing the rich dynamics of data.

The consumption measure is the real quarterly consumption of non-durables from the National

Income and Products Account covering 1951.1 to 1984.4. The interest rate is the 3-month T-bill

rate from the FRED database, deáated by the corresponding NIPA non-durable consumption

prices deáator. Finally, vart (ct+1) is calculated as follows: for each quarter t, we computed the

sample variance using the realized consumption changes in the next N quarters (ct+1;..., ct+N
) Results are reported for a range of values of N. The Örst instrument set is Z1 = (1, r

f
t2; r

f
t3,

rft4; ct2;ct3;ct4) and the second one is Z2 = (Z1; it2; it3; it4) where it denotes the

ináation rate between t and t+ 1:

Table 12 presents the results. When the intercept k; is assumed to be constant (column 1)

the EIS is estimated to be 0:11 and insigniÖcant, in line with most of the previous literature.

However, with vart (ct+1) appropriately included in the rest of the table, all of a sudden the

estimates of EIS jump to around 0.4. Repeating the same experiment with a larger instrument

set only strengthens this result, if anything we get more precise estimates which cluster around

0.4 to 0.5.
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