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Global Optimization



Why Global Optimization?

▶ Calibration and structural estimation are multidimensional
optimization problems.

▶ Except in very special cases, the objective function can feature kinks,
jaggedness, ridges, and even jumps, and is likely to have a large
number of local minima.

▶ Local maximization algorithms are not the right tool to use. They get
stuck in local minima—they are not looking for a global optimum.

True for Newton- (derivative-) based methods as well as DFNLS or
Nelder-Mead type non-derivative based methods.

▶ ∴ Using a good global optimizer is essential!

▶ A good option is TikTak, an algorithm I developed in collaboration with
my coauthors on different papers.

It is very fast & fully parallelizable without knowing MPI, OpenMP, CUDA,
etc.. (see Arnaud, Guvenen, Kleineberg (2019))
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Parallel Scaling Performance: Close to Linear!
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How Your Objective Function Looks Like

Figure 1: Griewank Function

(a) 3-D Plot
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How Your OBJ Looks Like
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OBJ in Hong and Chernozhukov (JE, 2003)
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Example: Rosenbrock Function

Figure 2: 3-D Plot
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Example: Rosenbrock Function

(a) 3-D Plot (b) Contour Map
Note: The global optimum is marked with the red ∗ marker on the contour map.
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Rosenbrock on Log Scale: Different Perspectives

Figure 3: See Arnaud, Guvenen, Kleineberg (2019) for more details

(a) Log Scale: Two Subtle Ridges
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(b) Log Scale: Two Ridges Merge into One Near
the Global Minimum
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“Visualize” the Objective Surface
(Necessary but not sufficient!!)



Slicing the Objective in Guvenen et al (2021): Param 1
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Source: All figures from Guvenen, Karahan, Ozkan, Song (2021).
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Slicing the Objective: Param 21
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Slicing the Objective, Zooming in (y-axis): Param 21
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Plot the Derivative! Param 1
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Plot the Derivative! Param 6
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Plot the Derivative! Param 21
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What are the sources of kinks, jaggedness, etc.

Sources from numerical methods used to solve structural model:

1 Linear interpolation generates an interpolated function that is
non-differentiable (i.e., have kinks) at every knot point.

2 Discretizing the choice set (grid search) makes this problem much
worse. (Avoid it all cost!)

3 Problems with (borrowing, portfolio, etc.) constraints.

4 Models with S-s type behavior (fixed costs, irreversibilities, discrete
choice, etc) typically create jumps OBJ

5 When moments are computed from simulated data, small changes in
parameter values can move some individuals across threshold and
cause jumps in OBJ.

1 Compute moments using analytical formulas when possible–less
susceptible to this problem.
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What are the sources of kinks, jaggedness, etc.

6. The moments that we choose match could be inherently
discontinuous in the underlying parameters:

1 the median of a distribution (e.g., wealth holdings)
2 or any percentile/quantile

This is one case where targeting central/standard moments (mean,
variance, etc) can make sense. But only if their data counterpart is well
estimated.

7. Problems (1) to (6) are amplified when moments are not jointly
sufficiently informative about one or more parameters to be
calibrated, because OBJ would be very flat in certain directions.
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*A Practical Guide

How to proceed in practice?

1 If you can establish some geometric properties of your objective
function, this is where you should start.

2 For example, in a standard portfolio choice problem with CRRA utility
and linear budget constraints, you can show that the RHS of the
Bellman equation has a single peak (no local maxima).

3 Even when this is theoretically true there is no guarantee your
numerical objective will have a single peak because of the
approximations. (We will see an example in a few weeks).

4 The least you should do is to plot slices and/or two-dimensional
surfaces from your objective function.

5 These will give you valuable insights into the nature of the problem.
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*A Practical Guide

▶ Having said that, when you solve a DP problem without fixed costs,
option values, max operators, and other sources of non-concavity,
local methods described above will usually work fine.

▶ When your minimizer converges, restart the program from the point it
converged to. (You will be surprised at how often the minimizer will
drift away from the supposed minimum!)

▶ Another idea is to do random restarts—a bunch of times!

▶ But this is not very efficient, because the random restart points could
end up being very close to each other (general problem with random
sampling—small sample issues.)

▶ Is there a better way? Yes (with some qualifications.)
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Global Optimization Algorithms



Global Optimization Algorithms



*Global Optimization

Definition 1
Let f : A → R be a function on some set A. And suppose that

∃! m = min
x∈A

f(x)

be the unique global minimum point of f() in A, with the associated global
minimizer x∗.

▶ Construct a sequence of points, x1, x2, ... in A such that the sequence of
values yn = mini=1,..,n f(xi) approaches the minimum m as n increases.

▶ yn is called the record (there is an entire set of tools associated with
records and their use).
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*Algorithm

1 Generate a random point x1 according to a probability distribution P1
on A; evaluate f(x1); set iteration number j = 1.

2 Using the points x1, x2, ...xj and the results of objective function
evaluation at these points, check whether j = n; that is check if an
appropriate stopping condition holds and terminate if yes. If no,
continue

3 Generate xj+1according to some probability distribution Pj+1 and
evaluate f(xj+1)

4 Substitute j+ 1 for j and return to step 2.
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*Different Approaches

1 Pure random search: All distributions Pjare the same and the points xj
are independent.

2 Markovian algorithms: Pj+1 depends only on xj and f(xj).

3 More general algorithms: Update Pj after a certain number of points
have been evaluated and based on past search information.
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*Regularity Conditions?

▶ With local optimization, assumptions on f that guarantee continuity or
differentiability are useful for convergence.

▶ With global algorithms, they are a lot less useful.

▶ For example, consider:

fk(x) =


1− 1

2

(
sin 5kπx

4(k−1)

)2
for x ∈ [0, 4(k−1)

5k ]

1−
(
sin 5kπx

4
)2 for x ∈ [ 4(k−1)

5k , 45 ]

1− 1
2 (sin 5πx)

2 for x ∈ [ 45 , 1]

where k ≥ 2 is an integer.
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*Regularity Conditions
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TIKTAK: An Asynchronously Parallelizable

Global Optimization Algorithm



TikTak: A Global Optimization Algorithm

Basic Outline of Algorithm:

1 Set j = 0 and start the iteration.

2 Start a local optimizer with initial guess xj and run until it “converges”
to a new point, call zj.

3 Draw a quasi-random initial guess, yj (e.g., Sobol’s sequence. More on
this in a minute).

4 Take new starting point as: x̃j = θjz∗j + (1− θj)yj where θj ∈ [0, 1] and z∗j
is the “record” as of iteration j.

5 Update j = j+ 1, and xj = x̃j−1. Go to step 2.

6 Iterate until convergence.

▶ Take θj to be close to zero initially and increase as you go.
▶ You could sprinkle some BFGS after step 2 and let it simmer for a while!
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Quasi-Random Numbers

▶ One could imagine that a better approach in the previous algorithm
would be take the starting guesses on a Cartesian grid.

▶ But how to decide on how coarse or fine this grid should be? If x is 6
dimensional and you take 3 points in each direction, you need to start
from 36 = 729 different points. And who says 3 points is good enough?

▶ Random numbers have the advantage that you do not have to decide
before hand how many restarts to do. Instead look at the
improvement in objective value.

▶ But a disadvantage of random numbers is that... well, they are random!
So they can accumulate in some areas and leave other areas empty.

▶ This is where quasi-random numbers come into play. They are not
random, but they spread out maximally in a given space no matter
how many of them are generated.
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Uniform Random vs. Sobol’ Numbers
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Benchmarking Global Optimizers

▶ Most structural estimation/calibration problems with more than a few
parameters require global optimization.

▶ The current approach taken by many is to use Nelder-Mead and restart
it from several starting points. If they all converge to the same point it
is taken as global optimum.

▶ But how many restarts are enough?
Consider a 10-dimensional objective. And suppose you take 1000 starting
points. Is that enough?
If we were to constructs a hypergrid (Cartesian) and place 2 points along
each axis, since 210 = 1024, you would get roughly 2 points in the domain
of each parameter. This is puny.
And it is rare to take 1000 starting points anyway.

▶ So we need global optimizers as our initial choice. How to compare
them?
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Benchmarking Global Optimizers

Results from Arnaud-Guvenen-Kleineberg (2019):

▶ Define “success” either as

function convergence to 10−6

max deviation in x of 10−6

Also analyze failures to see how badly they failed: e.g., did they stop at
10−5 or 10−1?

▶ We will compare 4 versions of TikTak and 6 global optimizers from
NLOPT suite. Several of them are award winners.

▶ We will also add local optimizers, like NM and DFPMIN.
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Data Profile for Griewank Test Func.

Lots of food for thought in the rankings. TikTak ranks top.

Some others are slow but with large budgets they can solve all problems.
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Deviations of Failed Attempts for Griewank

▶ Those that fail, fail a lot. Not always the case.

▶ For some test functions, many solvers get stucked at 10−4 or so. They
can still be useful.
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Data Profile for Griewank Test Func.

▶ Most useful plot. It tells us the worst case performance of each solver
relative to others available.
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Performance Profile: Income Dyn. Estimation

▶ Three versions of TikTak performs best. TikTak-NM8 is overkill because
it uses the slow NM algorithm with very tight success criteria
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A Little Parallel Programming

...Without knowing any parallel programming

▶ Ingredients you need:

Dropbox
Friends who will let you use their computers when they are asleep.

▶ Here is a modified version of my global algorithm that you can use
with N computers.
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A Little Parallel Programming

1 Generate an empty text file myobjvals.txt and put it into automatic
sync across all machines using Dropbox.

2 Generate a large number of quasi-random numbers (say 1000).
3 Take the first N of these points and start your program on N machines,

each with one of your quasi-random numbers as initial guess.
4 After Nelden-Mead converges on a given machine, write the minimum

value found and the corresponding point to myobjvals.txt.

5 Before starting the next iteration open and read all objective values
found so far (because of syncing this will be the minimum across all
machines!)

6 Take your initial guess to the a linear combination of this best point
and a new quasi-random number.

7 The rest of the algorithm is as before.
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Parallel Implementation Posted on Github

▶ Go to Serdar Ozkan’s Github:

https://github.com/serdarozkan/TikTak#tiktak

▶ It has all the info and the codes you need to run.

▶ The version on Github is more efficient than the one in the
“Benchmarking” paper.

▶ How many cores can you parallelize over? Further work needed.

▶ My rule of thumbs: #of cores ≤
√
#local restarts

▶ The following picture says it works pretty well.
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Parallel Scaling Performance: Close to Linear!
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TikTak Parallel Scaling Performance with # of Cores

Data

Linear fit

Objective  > 1.01 Single-core run

Slope of linear fit: --0.976
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