
Lecture 1: Introduction and Dynamic Programming

Fatih Guvenen
University of Minnesota

November 2023

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 1 / 45

Four Components of a Quantitative Project

1 Model specification:
Preferences, technology, demographic structure, equilibrium concept,
frictions, driving forces, etc.

2 Numerical solution:
Programming language, algorithms, accuracy vs speed, etc.

3 Calibration/Estimation:
Simulation-based estimation, global optimization

4 Analyzing the solved model:
Policy experiments/counterfactuals, welfare analysis, transitions, etc.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 2 / 45

This Class: 2 & 3

1 Model specification:
Preferences, technology, demographic structure, equilibrium concept,
frictions, driving forces, etc.

2 Numerical solution:
Programming language, algorithms, accuracy vs speed, etc.

3 Calibration/Estimation:
Simulation-based estimation, global optimization

4 Analyzing the solved model:
Policy experiments/counterfactuals, welfare analysis, transitions, etc.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 2 / 45

Prototypical Problem You Will Probably Need to Solve

1 A Dynamic Programming problem, with:
2 choice variables, 2-4 continuous state variables
1-2 discrete state variables
Fixed costs, adjustment costs, irreversibilities, etc.

Which will be embedded in...

2 A GE model, possibly with aggregate shocks, and
two or more equilibrium pricing functions to solve as a function of
aggregate state and wealth distribution
endogenous laws of motion to solve for
stationary distributions to find

Which will be embedded in...

3 An estimation/calibration problem with 5 to 15 parameters by
matching moments

where moments can have kinks or jumps in parameters
the objective is likely to have multiple local minima (sometimes
hundreds of them)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 3 / 45

Prototypical Problem You Will Probably Need to Solve

1 A Dynamic Programming problem, with:
2 choice variables, 2-4 continuous state variables
1-2 discrete state variables
Fixed costs, adjustment costs, irreversibilities, etc.
Which will be embedded in...

2 A GE model, possibly with aggregate shocks, and
two or more equilibrium pricing functions to solve as a function of
aggregate state and wealth distribution
endogenous laws of motion to solve for
stationary distributions to find

Which will be embedded in...

3 An estimation/calibration problem with 5 to 15 parameters by
matching moments

where moments can have kinks or jumps in parameters
the objective is likely to have multiple local minima (sometimes
hundreds of them)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 3 / 45

Prototypical Problem You Will Probably Need to Solve

1 A Dynamic Programming problem, with:
2 choice variables, 2-4 continuous state variables
1-2 discrete state variables
Fixed costs, adjustment costs, irreversibilities, etc.
Which will be embedded in...

2 A GE model, possibly with aggregate shocks, and
two or more equilibrium pricing functions to solve as a function of
aggregate state and wealth distribution
endogenous laws of motion to solve for
stationary distributions to find

Which will be embedded in...

3 An estimation/calibration problem with 5 to 15 parameters by
matching moments

where moments can have kinks or jumps in parameters
the objective is likely to have multiple local minima (sometimes
hundreds of them)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 3 / 45

Prototypical Problem You Will Probably Need to Solve

1 A Dynamic Programming problem, with:
2 choice variables, 2-4 continuous state variables
1-2 discrete state variables
Fixed costs, adjustment costs, irreversibilities, etc.
Which will be embedded in...

2 A GE model, possibly with aggregate shocks, and
two or more equilibrium pricing functions to solve as a function of
aggregate state and wealth distribution
endogenous laws of motion to solve for
stationary distributions to find
Which will be embedded in...

3 An estimation/calibration problem with 5 to 15 parameters by
matching moments

where moments can have kinks or jumps in parameters
the objective is likely to have multiple local minima (sometimes
hundreds of them)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 3 / 45

Prototypical Problem You Will Probably Need to Solve

1 A Dynamic Programming problem, with:
2 choice variables, 2-4 continuous state variables
1-2 discrete state variables
Fixed costs, adjustment costs, irreversibilities, etc.
Which will be embedded in...

2 A GE model, possibly with aggregate shocks, and
two or more equilibrium pricing functions to solve as a function of
aggregate state and wealth distribution
endogenous laws of motion to solve for
stationary distributions to find
Which will be embedded in...

3 An estimation/calibration problem with 5 to 15 parameters by
matching moments

where moments can have kinks or jumps in parameters
the objective is likely to have multiple local minima (sometimes
hundreds of them)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 3 / 45

A Word about Programming Languages

▶ Choice of programming language is critical for successfully solving a
problem like the one above.

▶ Three (broad) types of programming languages
Low-level/Compiled languages: Fortran, C/C++
High level/Interpreted languages: Matlab, Python, R, Stata, etc.
High-level language with option to compile: Julia.

▶ One important difference: Speed!

▶ In scientific disciplines where computational demands are high,
compiled languages are much more popular.

▶ Julia is a great option: A more modern language that can be fast if you
know how to optimize it. But it requires work & experience to make
use of its speed. (Still not as fast as C/Fortran though)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 4 / 45

A Word about Programming Languages

▶ Choice of programming language is critical for successfully solving a
problem like the one above.

▶ Three (broad) types of programming languages
Low-level/Compiled languages: Fortran, C/C++
High level/Interpreted languages: Matlab, Python, R, Stata, etc.
High-level language with option to compile: Julia.

▶ One important difference: Speed!

▶ In scientific disciplines where computational demands are high,
compiled languages are much more popular.

▶ Julia is a great option: A more modern language that can be fast if you
know how to optimize it. But it requires work & experience to make
use of its speed. (Still not as fast as C/Fortran though)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 4 / 45

A Word about Programming Languages

▶ Choice of programming language is critical for successfully solving a
problem like the one above.

▶ Three (broad) types of programming languages
Low-level/Compiled languages: Fortran, C/C++
High level/Interpreted languages: Matlab, Python, R, Stata, etc.
High-level language with option to compile: Julia.

▶ One important difference: Speed!

▶ In scientific disciplines where computational demands are high,
compiled languages are much more popular.

▶ Julia is a great option: A more modern language that can be fast if you
know how to optimize it. But it requires work & experience to make
use of its speed. (Still not as fast as C/Fortran though)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 4 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Comparison Beyond Speed

▶ Comparison for large-scale problems (i.e., the prototypical problem above):

Compiled Interpreted

Speed 10 to 100 times faster Much slower

Ease of coding Higher set up cost Lower set up cost

But often clearer code Usually simpler syntax

Ease of debug. complex code Compiler catches bugs Errors harder to find

Control over memory, CPU More customizable/scalable Less control

Availability of scientific libraries Very large & often free Large but can require fee

▶ Important note: Linux/Mac are much more efficient at memory management
than Windows. So, for large problems with *very* large data objects (like large
matrices or arrays), your code can run much faster using the former.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 5 / 45

Dynamic Programming: Goal

Solve:

V(k, z) = max
c,k′

[u(c) + 𝛽E(V(k′, z′) |z)]

c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ Questions:

1 Does a solution exist?

2 Is it unique?

3 If the answers to (1) and (2) are yes: how do we find this solution?

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 6 / 45

Dynamic Programming: Goal

Solve:

V(k, z) = max
c,k′

[u(c) + 𝛽E(V(k′, z′) |z)]

c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ Questions:

1 Does a solution exist?

2 Is it unique?

3 If the answers to (1) and (2) are yes: how do we find this solution?

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 6 / 45

Dynamic Programming: Goal

Solve:

V(k, z) = max
c,k′

[u(c) + 𝛽E(V(k′, z′) |z)]

c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ Questions:

1 Does a solution exist?

2 Is it unique?

3 If the answers to (1) and (2) are yes: how do we find this solution?

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 6 / 45

Dynamic Programming: Goal

Solve:

V(k, z) = max
c,k′

[u(c) + 𝛽E(V(k′, z′) |z)]

c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ Questions:

1 Does a solution exist?

2 Is it unique?

3 If the answers to (1) and (2) are yes: how do we find this solution?

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 6 / 45

Contraction Mapping Theorem

▶ Definition (Contraction Mapping) Let (S, d) be a metric space and
T : S → S be a mapping of S into itself. T is a contraction mapping with
modulus 𝛽, if for some 𝛽 ∈ (0, 1) we have

d(Tv1, Tv2) ≤ 𝛽d(v1, v2)

for all v1, v2 ∈ S.

▶ Contraction Mapping Theorem: Let (S, d) be a complete metric space
and suppose that T : S → S is a contraction mapping. Then, T has a
unique fixed point v∗ ∈ S such that

Tv∗ = v∗ = lim
N→∞

TNv0

for all v0 ∈ S.

▶ The beauty of CMT is that it is a constructive theorem: it not only tells
us the existence/uniqueness of v∗ but it also shows us how to find it!

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 7 / 45

Contraction Mapping Theorem

▶ Definition (Contraction Mapping) Let (S, d) be a metric space and
T : S → S be a mapping of S into itself. T is a contraction mapping with
modulus 𝛽, if for some 𝛽 ∈ (0, 1) we have

d(Tv1, Tv2) ≤ 𝛽d(v1, v2)

for all v1, v2 ∈ S.

▶ Contraction Mapping Theorem: Let (S, d) be a complete metric space
and suppose that T : S → S is a contraction mapping. Then, T has a
unique fixed point v∗ ∈ S such that

Tv∗ = v∗ = lim
N→∞

TNv0

for all v0 ∈ S.

▶ The beauty of CMT is that it is a constructive theorem: it not only tells
us the existence/uniqueness of v∗ but it also shows us how to find it!

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 7 / 45

Contraction Mapping Theorem

▶ Definition (Contraction Mapping) Let (S, d) be a metric space and
T : S → S be a mapping of S into itself. T is a contraction mapping with
modulus 𝛽, if for some 𝛽 ∈ (0, 1) we have

d(Tv1, Tv2) ≤ 𝛽d(v1, v2)

for all v1, v2 ∈ S.

▶ Contraction Mapping Theorem: Let (S, d) be a complete metric space
and suppose that T : S → S is a contraction mapping. Then, T has a
unique fixed point v∗ ∈ S such that

Tv∗ = v∗ = lim
N→∞

TNv0

for all v0 ∈ S.

▶ The beauty of CMT is that it is a constructive theorem: it not only tells
us the existence/uniqueness of v∗ but it also shows us how to find it!

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 7 / 45

Qualitative Properties of v∗

▶ We cannot apply CMT in certain cases, because the particular set we
are interested in is not a complete metric space.

▶ The following corollary comes in handy in those cases.

▶ Corollary: Let (S, d) be a complete metric space and T : S → S be a
contraction mapping with Tv∗ = v∗ .

a. If S is a closed subset of S, and T(S) ⊂ S, then v∗ ∈ S.

b. If, in addition, T(S) ⊂ S ⊂ S, then v∗ ∈ S.

▶ S = {continuous, bounded, strictly concave}. Not a complete metric
space. S = {continuous, bounded, weakly concave} is.

So we need to be able to establish that T maps elements of S into S.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 8 / 45

Qualitative Properties of v∗

▶ We cannot apply CMT in certain cases, because the particular set we
are interested in is not a complete metric space.

▶ The following corollary comes in handy in those cases.

▶ Corollary: Let (S, d) be a complete metric space and T : S → S be a
contraction mapping with Tv∗ = v∗ .

a. If S is a closed subset of S, and T(S) ⊂ S, then v∗ ∈ S.

b. If, in addition, T(S) ⊂ S ⊂ S, then v∗ ∈ S.

▶ S = {continuous, bounded, strictly concave}. Not a complete metric
space. S = {continuous, bounded, weakly concave} is.

So we need to be able to establish that T maps elements of S into S.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 8 / 45

Qualitative Properties of v∗

▶ We cannot apply CMT in certain cases, because the particular set we
are interested in is not a complete metric space.

▶ The following corollary comes in handy in those cases.

▶ Corollary: Let (S, d) be a complete metric space and T : S → S be a
contraction mapping with Tv∗ = v∗ .

a. If S is a closed subset of S, and T(S) ⊂ S, then v∗ ∈ S.

b. If, in addition, T(S) ⊂ S ⊂ S, then v∗ ∈ S.

▶ S = {continuous, bounded, strictly concave}. Not a complete metric
space. S = {continuous, bounded, weakly concave} is.

So we need to be able to establish that T maps elements of S into S.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 8 / 45

Qualitative Properties of v∗

▶ We cannot apply CMT in certain cases, because the particular set we
are interested in is not a complete metric space.

▶ The following corollary comes in handy in those cases.

▶ Corollary: Let (S, d) be a complete metric space and T : S → S be a
contraction mapping with Tv∗ = v∗ .

a. If S is a closed subset of S, and T(S) ⊂ S, then v∗ ∈ S.

b. If, in addition, T(S) ⊂ S ⊂ S, then v∗ ∈ S.

▶ S = {continuous, bounded, strictly concave}. Not a complete metric
space. S = {continuous, bounded, weakly concave} is.

So we need to be able to establish that T maps elements of S into S.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 8 / 45

A Prototype Problem

V(k, z) = max
c,k′

[
u(c) + 𝛽

ˆ
V(k′, z′)f(z′ |z)dz′

]
c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ CMT tells us to start with an appropriate guess V0, then repeatedly
solve the problem on the RHS.

Two pieces of this problem:
▶ How to evaluate the conditional expectation (integral)?
▶ How to do constrained optimization (esp. in more than one

dimension)?
▶ There are quick-and-dirty methods that are slow and inaccurate, and

advanced methods that are fast and accurate. To do any kind of
ambitious work, you will need the latter.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 9 / 45

A Prototype Problem

V(k, z) = max
c,k′

[
u(c) + 𝛽

ˆ
V(k′, z′)f(z′ |z)dz′

]
c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ CMT tells us to start with an appropriate guess V0, then repeatedly
solve the problem on the RHS.

Two pieces of this problem:
▶ How to evaluate the conditional expectation (integral)?

▶ How to do constrained optimization (esp. in more than one
dimension)?

▶ There are quick-and-dirty methods that are slow and inaccurate, and
advanced methods that are fast and accurate. To do any kind of
ambitious work, you will need the latter.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 9 / 45

A Prototype Problem

V(k, z) = max
c,k′

[
u(c) + 𝛽

ˆ
V(k′, z′)f(z′ |z)dz′

]
c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ CMT tells us to start with an appropriate guess V0, then repeatedly
solve the problem on the RHS.

Two pieces of this problem:
▶ How to evaluate the conditional expectation (integral)?
▶ How to do constrained optimization (esp. in more than one

dimension)?

▶ There are quick-and-dirty methods that are slow and inaccurate, and
advanced methods that are fast and accurate. To do any kind of
ambitious work, you will need the latter.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 9 / 45

A Prototype Problem

V(k, z) = max
c,k′

[
u(c) + 𝛽

ˆ
V(k′, z′)f(z′ |z)dz′

]
c + k′ = (1 + r)k + z
z′ = 𝜌z + 𝜂

▶ CMT tells us to start with an appropriate guess V0, then repeatedly
solve the problem on the RHS.

Two pieces of this problem:
▶ How to evaluate the conditional expectation (integral)?
▶ How to do constrained optimization (esp. in more than one

dimension)?
▶ There are quick-and-dirty methods that are slow and inaccurate, and

advanced methods that are fast and accurate. To do any kind of
ambitious work, you will need the latter.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 9 / 45

Simple Analytical Example

Let’s Start with a Simple Analytical Example

Neoclassical Growth Model

▶ Consider the special case with log utility, Cobb-Douglas production
and full depreciation:

V (k) = max
c,k′

{log c + 𝛽V (k′)}

s.t c = Ak𝛼 − k′

▶ Rewrite the Bellman equation as:

V (k) = max
c,k′

{log (Ak𝛼 − k′) + 𝛽V (k′)}

▶ Our goal is to find V(k) and a decision rule g such that k′ = g(k)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 10 / 45

Let’s Start with a Simple Analytical Example

Neoclassical Growth Model

▶ Consider the special case with log utility, Cobb-Douglas production
and full depreciation:

V (k) = max
c,k′

{log c + 𝛽V (k′)}

s.t c = Ak𝛼 − k′

▶ Rewrite the Bellman equation as:

V (k) = max
c,k′

{log (Ak𝛼 − k′) + 𝛽V (k′)}

▶ Our goal is to find V(k) and a decision rule g such that k′ = g(k)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 10 / 45

Let’s Start with a Simple Analytical Example

Neoclassical Growth Model

▶ Consider the special case with log utility, Cobb-Douglas production
and full depreciation:

V (k) = max
c,k′

{log c + 𝛽V (k′)}

s.t c = Ak𝛼 − k′

▶ Rewrite the Bellman equation as:

V (k) = max
c,k′

{log (Ak𝛼 − k′) + 𝛽V (k′)}

▶ Our goal is to find V(k) and a decision rule g such that k′ = g(k)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 10 / 45

I. Backward Induction (Brute Force)

▶ If t = T < ∞, in the last period we would have: V0 (k) ≡ 0 for all k.
Therefore:

V1 (k) = max
k′

log (Ak
𝛼 − k′) + 𝛽V0 (k′)︸ ︷︷ ︸

≡0

▶ V1 = maxk′ log (Ak𝛼 − k′) ⇒ k′ = 0 ⇒ V1 (k) = log A + 𝛼 log k

▶ Substitute V1 into the RHS of V2 :

V2 = max
k′

{log (Ak𝛼 − k′) + 𝛽 (log A + 𝛼 log k′)}

⇒ FOC :
1

Ak𝛼 − k′ =
𝛽𝛼

k′ ⇒ k′ = 𝛼𝛽Ak𝛼
1 + 𝛼𝛽

▶ Substitute k′ to obtain V2. We can keep iterating to find the solution.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 11 / 45

I. Backward Induction (Brute Force)

▶ If t = T < ∞, in the last period we would have: V0 (k) ≡ 0 for all k.
Therefore:

V1 (k) = max
k′

log (Ak
𝛼 − k′) + 𝛽V0 (k′)︸ ︷︷ ︸

≡0

▶ V1 = maxk′ log (Ak𝛼 − k′) ⇒ k′ = 0 ⇒ V1 (k) = log A + 𝛼 log k

▶ Substitute V1 into the RHS of V2 :

V2 = max
k′

{log (Ak𝛼 − k′) + 𝛽 (log A + 𝛼 log k′)}

⇒ FOC :
1

Ak𝛼 − k′ =
𝛽𝛼

k′ ⇒ k′ = 𝛼𝛽Ak𝛼
1 + 𝛼𝛽

▶ Substitute k′ to obtain V2. We can keep iterating to find the solution.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 11 / 45

I. Backward Induction (Brute Force)

▶ If t = T < ∞, in the last period we would have: V0 (k) ≡ 0 for all k.
Therefore:

V1 (k) = max
k′

log (Ak
𝛼 − k′) + 𝛽V0 (k′)︸ ︷︷ ︸

≡0

▶ V1 = maxk′ log (Ak𝛼 − k′) ⇒ k′ = 0 ⇒ V1 (k) = log A + 𝛼 log k

▶ Substitute V1 into the RHS of V2 :

V2 = max
k′

{log (Ak𝛼 − k′) + 𝛽 (log A + 𝛼 log k′)}

⇒ FOC :
1

Ak𝛼 − k′ =
𝛽𝛼

k′ ⇒ k′ = 𝛼𝛽Ak𝛼
1 + 𝛼𝛽

▶ Substitute k′ to obtain V2. We can keep iterating to find the solution.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 11 / 45

I. Backward Induction (Brute Force)

▶ If t = T < ∞, in the last period we would have: V0 (k) ≡ 0 for all k.
Therefore:

V1 (k) = max
k′

log (Ak
𝛼 − k′) + 𝛽V0 (k′)︸ ︷︷ ︸

≡0

▶ V1 = maxk′ log (Ak𝛼 − k′) ⇒ k′ = 0 ⇒ V1 (k) = log A + 𝛼 log k

▶ Substitute V1 into the RHS of V2 :

V2 = max
k′

{log (Ak𝛼 − k′) + 𝛽 (log A + 𝛼 log k′)}

⇒ FOC :
1

Ak𝛼 − k′ =
𝛽𝛼

k′ ⇒ k′ = 𝛼𝛽Ak𝛼
1 + 𝛼𝛽

▶ Substitute k′ to obtain V2. We can keep iterating to find the solution.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 11 / 45

I. Backward Induction (Brute Force)

▶ If t = T < ∞, in the last period we would have: V0 (k) ≡ 0 for all k.
Therefore:

V1 (k) = max
k′

log (Ak
𝛼 − k′) + 𝛽V0 (k′)︸ ︷︷ ︸

≡0

▶ V1 = maxk′ log (Ak𝛼 − k′) ⇒ k′ = 0 ⇒ V1 (k) = log A + 𝛼 log k

▶ Substitute V1 into the RHS of V2 :

V2 = max
k′

{log (Ak𝛼 − k′) + 𝛽 (log A + 𝛼 log k′)}

⇒ FOC :
1

Ak𝛼 − k′ =
𝛽𝛼

k′ ⇒ k′ = 𝛼𝛽Ak𝛼
1 + 𝛼𝛽

▶ Substitute k′ to obtain V2. We can keep iterating to find the solution.
Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 11 / 45

II. Guess and Verify (Value Function)

▶ But there is a more direct approach.

▶ Note that both V2 and V1 have the same form: a + b log k

▶ Conjecture that the solution V∗ (k) = a + b log k, where a and b are
coefficients that need to be determined.

a + b log k = max
c,k′

{log (Ak𝛼 − k′) + 𝛽 (a + b log k′)}

▶ FOC:

1
Ak𝛼 − k′ =

𝛽b
k′ ⇒ k′ = 𝛽b

1 + 𝛽bAk
𝛼

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 12 / 45

II. Guess and Verify (Value Function)

▶ But there is a more direct approach.

▶ Note that both V2 and V1 have the same form: a + b log k

▶ Conjecture that the solution V∗ (k) = a + b log k, where a and b are
coefficients that need to be determined.

a + b log k = max
c,k′

{log (Ak𝛼 − k′) + 𝛽 (a + b log k′)}

▶ FOC:

1
Ak𝛼 − k′ =

𝛽b
k′ ⇒ k′ = 𝛽b

1 + 𝛽bAk
𝛼

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 12 / 45

II. Guess and Verify (Value Function)

▶ But there is a more direct approach.

▶ Note that both V2 and V1 have the same form: a + b log k

▶ Conjecture that the solution V∗ (k) = a + b log k, where a and b are
coefficients that need to be determined.

a + b log k = max
c,k′

{log (Ak𝛼 − k′) + 𝛽 (a + b log k′)}

▶ FOC:

1
Ak𝛼 − k′ =

𝛽b
k′ ⇒ k′ = 𝛽b

1 + 𝛽bAk
𝛼

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 12 / 45

II. Guess and Verify (Value Function)

▶ But there is a more direct approach.

▶ Note that both V2 and V1 have the same form: a + b log k

▶ Conjecture that the solution V∗ (k) = a + b log k, where a and b are
coefficients that need to be determined.

a + b log k = max
c,k′

{log (Ak𝛼 − k′) + 𝛽 (a + b log k′)}

▶ FOC:

1
Ak𝛼 − k′ =

𝛽b
k′ ⇒ k′ = 𝛽b

1 + 𝛽bAk
𝛼

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 12 / 45

II. Guess and Verify (Value Function)

▶ Let LHS = a + b log k. Plug in the expression for k′ into the RHS:

RHS = log

(
Ak𝛼 − 𝛽b

1 + 𝛽bAk
𝛼

)
+ 𝛽

(
a + b log

(
𝛽b

1 + 𝛽bAk
𝛼

))
= (1 + 𝛽b) log A + log

(
1

1 + 𝛽b

)
+ a𝛽 + b𝛽 log

(
𝛽b

1 + 𝛽b

)
+𝛼 (1 + 𝛽b) log k

▶ Imposing the condition that LHS ≡ RHS for all k, we find a and b :

a =
1

1 − 𝛽

1
1 − 𝛼𝛽

[
log A + (1 − 𝛼𝛽) log (1 − 𝛼𝛽)

+𝛼𝛽 log𝛼𝛽

]
b =

𝛼

1 − 𝛼𝛽

▶ We have solved the model!

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 13 / 45

II. Guess and Verify (Value Function)

▶ Let LHS = a + b log k. Plug in the expression for k′ into the RHS:

RHS = log

(
Ak𝛼 − 𝛽b

1 + 𝛽bAk
𝛼

)
+ 𝛽

(
a + b log

(
𝛽b

1 + 𝛽bAk
𝛼

))
= (1 + 𝛽b) log A + log

(
1

1 + 𝛽b

)
+ a𝛽 + b𝛽 log

(
𝛽b

1 + 𝛽b

)
+𝛼 (1 + 𝛽b) log k

▶ Imposing the condition that LHS ≡ RHS for all k, we find a and b :

a =
1

1 − 𝛽

1
1 − 𝛼𝛽

[
log A + (1 − 𝛼𝛽) log (1 − 𝛼𝛽)

+𝛼𝛽 log𝛼𝛽

]
b =

𝛼

1 − 𝛼𝛽

▶ We have solved the model!

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 13 / 45

II. Guess and Verify (Value Function)

▶ Let LHS = a + b log k. Plug in the expression for k′ into the RHS:

RHS = log

(
Ak𝛼 − 𝛽b

1 + 𝛽bAk
𝛼

)
+ 𝛽

(
a + b log

(
𝛽b

1 + 𝛽bAk
𝛼

))
= (1 + 𝛽b) log A + log

(
1

1 + 𝛽b

)
+ a𝛽 + b𝛽 log

(
𝛽b

1 + 𝛽b

)
+𝛼 (1 + 𝛽b) log k

▶ Imposing the condition that LHS ≡ RHS for all k, we find a and b :

a =
1

1 − 𝛽

1
1 − 𝛼𝛽

[
log A + (1 − 𝛼𝛽) log (1 − 𝛼𝛽)

+𝛼𝛽 log𝛼𝛽

]
b =

𝛼

1 − 𝛼𝛽

▶ We have solved the model!
Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 13 / 45

Guess and Verify as a Numerical Tool

▶ Although this was a very special example, the same general idea
underlies many numerical methods:

▶ As long as the true value function is “well-behaved” (smooth,
continuous, etc), we can choose a sufficiently flexible family of
functions that has a finite (ideally small) number of parameters.

▶ Then we can apply the same logic as above and solve for the unknown
coefficients, which then gives us the complete solution.

▶ Many solution methods rely on various versions of this general idea
(perturbation methods, collocation methods, parametrized
expectations, Krusell-Smith, etc.).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 14 / 45

Guess and Verify as a Numerical Tool

▶ Although this was a very special example, the same general idea
underlies many numerical methods:

▶ As long as the true value function is “well-behaved” (smooth,
continuous, etc), we can choose a sufficiently flexible family of
functions that has a finite (ideally small) number of parameters.

▶ Then we can apply the same logic as above and solve for the unknown
coefficients, which then gives us the complete solution.

▶ Many solution methods rely on various versions of this general idea
(perturbation methods, collocation methods, parametrized
expectations, Krusell-Smith, etc.).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 14 / 45

Guess and Verify as a Numerical Tool

▶ Although this was a very special example, the same general idea
underlies many numerical methods:

▶ As long as the true value function is “well-behaved” (smooth,
continuous, etc), we can choose a sufficiently flexible family of
functions that has a finite (ideally small) number of parameters.

▶ Then we can apply the same logic as above and solve for the unknown
coefficients, which then gives us the complete solution.

▶ Many solution methods rely on various versions of this general idea
(perturbation methods, collocation methods, parametrized
expectations, Krusell-Smith, etc.).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 14 / 45

Guess and Verify as a Numerical Tool

▶ Although this was a very special example, the same general idea
underlies many numerical methods:

▶ As long as the true value function is “well-behaved” (smooth,
continuous, etc), we can choose a sufficiently flexible family of
functions that has a finite (ideally small) number of parameters.

▶ Then we can apply the same logic as above and solve for the unknown
coefficients, which then gives us the complete solution.

▶ Many solution methods rely on various versions of this general idea
(perturbation methods, collocation methods, parametrized
expectations, Krusell-Smith, etc.).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 14 / 45

III. Guess and Verify (Policy Functions)

▶ Let the policy rule for savings be: k′ = g(k). The Euler equation is:

1
Ak𝛼 − g (k) −

𝛽𝛼A
(
g (k)𝛼−1

)
A
(
g (k)𝛼 − g (g (k))

) = 0 for all k.

which is a functional equation in g (k) .

▶ Guess g (k) = sAk𝛼 , and substitute above:

1
(1 − s) Ak𝛼 =

𝛽𝛼A (sAk𝛼)𝛼−1

A
(
(sAk𝛼)𝛼 − sA (aAk𝛼)𝛼

)
▶ As can be seen, k cancels out, and we get s = 𝛼𝛽.

▶ By using a very flexible choice of g() this method too can be used for
solving very general models.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 15 / 45

III. Guess and Verify (Policy Functions)

▶ Let the policy rule for savings be: k′ = g(k). The Euler equation is:

1
Ak𝛼 − g (k) −

𝛽𝛼A
(
g (k)𝛼−1

)
A
(
g (k)𝛼 − g (g (k))

) = 0 for all k.

which is a functional equation in g (k) .

▶ Guess g (k) = sAk𝛼 , and substitute above:

1
(1 − s) Ak𝛼 =

𝛽𝛼A (sAk𝛼)𝛼−1

A
(
(sAk𝛼)𝛼 − sA (aAk𝛼)𝛼

)

▶ As can be seen, k cancels out, and we get s = 𝛼𝛽.

▶ By using a very flexible choice of g() this method too can be used for
solving very general models.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 15 / 45

III. Guess and Verify (Policy Functions)

▶ Let the policy rule for savings be: k′ = g(k). The Euler equation is:

1
Ak𝛼 − g (k) −

𝛽𝛼A
(
g (k)𝛼−1

)
A
(
g (k)𝛼 − g (g (k))

) = 0 for all k.

which is a functional equation in g (k) .

▶ Guess g (k) = sAk𝛼 , and substitute above:

1
(1 − s) Ak𝛼 =

𝛽𝛼A (sAk𝛼)𝛼−1

A
(
(sAk𝛼)𝛼 − sA (aAk𝛼)𝛼

)
▶ As can be seen, k cancels out, and we get s = 𝛼𝛽.

▶ By using a very flexible choice of g() this method too can be used for
solving very general models.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 15 / 45

III. Guess and Verify (Policy Functions)

▶ Let the policy rule for savings be: k′ = g(k). The Euler equation is:

1
Ak𝛼 − g (k) −

𝛽𝛼A
(
g (k)𝛼−1

)
A
(
g (k)𝛼 − g (g (k))

) = 0 for all k.

which is a functional equation in g (k) .

▶ Guess g (k) = sAk𝛼 , and substitute above:

1
(1 − s) Ak𝛼 =

𝛽𝛼A (sAk𝛼)𝛼−1

A
(
(sAk𝛼)𝛼 − sA (aAk𝛼)𝛼

)
▶ As can be seen, k cancels out, and we get s = 𝛼𝛽.

▶ By using a very flexible choice of g() this method too can be used for
solving very general models.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 15 / 45

Numerical Value Function
Iteration (VFI)

Standard VFI

▶ Standard Value Function Iteration is simply the application of the
Contraction Mapping Theorem

Algorithmus 1 : STANDARD VALUE FUNCTION ITERATION

1 Set n = 0. Choose an initial guess V0 ∈ S.

2 Obtain Vn+1 by applying the mapping: Vn+1 = TVn, which entails
maximizing the right-hand side of the Bellman equation.

3 Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 2.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 16 / 45

VFI is Slow. How to Speed It Up?

▶ VFI can be very slow when 𝛽 ≈ 1. Three ways to accelerate:

1 (Howard’s) Policy Iteration Algorithm (together with its “modified”
version)

2 MacQueen-Porteus (MQP) error bounds

3 Endogenous Grid Method (EGM).

▶ In general, basic VFI should never be used without at least one of
these add-ons.

EGM is your best bet when it’s applicable. But in certain cases, it’s not.

In those cases, a combination of Howard’s algorithm and MQP can be very
useful.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 17 / 45

VFI is Slow. How to Speed It Up?

▶ VFI can be very slow when 𝛽 ≈ 1. Three ways to accelerate:

1 (Howard’s) Policy Iteration Algorithm (together with its “modified”
version)

2 MacQueen-Porteus (MQP) error bounds

3 Endogenous Grid Method (EGM).

▶ In general, basic VFI should never be used without at least one of
these add-ons.

EGM is your best bet when it’s applicable. But in certain cases, it’s not.

In those cases, a combination of Howard’s algorithm and MQP can be very
useful.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 17 / 45

VFI is Slow. How to Speed It Up?

▶ VFI can be very slow when 𝛽 ≈ 1. Three ways to accelerate:

1 (Howard’s) Policy Iteration Algorithm (together with its “modified”
version)

2 MacQueen-Porteus (MQP) error bounds

3 Endogenous Grid Method (EGM).

▶ In general, basic VFI should never be used without at least one of
these add-ons.

EGM is your best bet when it’s applicable. But in certain cases, it’s not.

In those cases, a combination of Howard’s algorithm and MQP can be very
useful.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 17 / 45

VFI is Slow. How to Speed It Up?

▶ VFI can be very slow when 𝛽 ≈ 1. Three ways to accelerate:

1 (Howard’s) Policy Iteration Algorithm (together with its “modified”
version)

2 MacQueen-Porteus (MQP) error bounds

3 Endogenous Grid Method (EGM).

▶ In general, basic VFI should never be used without at least one of
these add-ons.

EGM is your best bet when it’s applicable. But in certain cases, it’s not.

In those cases, a combination of Howard’s algorithm and MQP can be very
useful.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 17 / 45

VFI is Slow. How to Speed It Up?

▶ VFI can be very slow when 𝛽 ≈ 1. Three ways to accelerate:

1 (Howard’s) Policy Iteration Algorithm (together with its “modified”
version)

2 MacQueen-Porteus (MQP) error bounds

3 Endogenous Grid Method (EGM).

▶ In general, basic VFI should never be used without at least one of
these add-ons.

EGM is your best bet when it’s applicable. But in certain cases, it’s not.

In those cases, a combination of Howard’s algorithm and MQP can be very
useful.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 17 / 45

Howard’s Policy Iteration

Consider the neoclassical growth model:

V (k, z) = max
c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E (V (k′, z′) |z)
}

s.t c + k′ = ezk𝛼 + (1 − 𝛿)k (P1)
z′ = 𝜌z + 𝜂′, k′ ≥ k.

▶ In stage n of the VFI algorithm, first, we maximize the RHS and solve
for the policy rule:

s̃n(k, z) = argmax
s≥k

{
(ezjk𝛼i + (1 − 𝛿)k − s)1−𝛾

1 − 𝛾
+ 𝛽E (Vn (s, z′) |z)

}
. (1)

▶ Second: Plug s̃n (k, z) into eq. (1), which I will call “Howard’s mapping”:

Vn+1 = Ts̃nVn . (2)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 18 / 45

Howard’s Policy Iteration

Consider the neoclassical growth model:

V (k, z) = max
c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E (V (k′, z′) |z)
}

s.t c + k′ = ezk𝛼 + (1 − 𝛿)k (P1)
z′ = 𝜌z + 𝜂′, k′ ≥ k.

▶ In stage n of the VFI algorithm, first, we maximize the RHS and solve
for the policy rule:

s̃n (k, z) = argmax
s≥k

{
(ezjk𝛼i + (1 − 𝛿)k − s)1−𝛾

1 − 𝛾
+ 𝛽E (Vn (s, z′) |z)

}
. (1)

▶ Second: Plug s̃n (k, z) into eq. (1), which I will call “Howard’s mapping”:

Vn+1 = Ts̃nVn . (2)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 18 / 45

Policy Iteration

▶ Maximization step can be time consuming. So it seems like a waste to
use the new policy for only one period in updating to Vn+1 .

▶ A simple but key insight is that Ts̃n (in eq. 2) is also a contraction
mapping with modulus 𝛽.

→ if we apply Ts̃n repeatedly, it also converges to a fixed point itself at
rate 𝛽 .

▶ Of course, this fixed point is not the solution of the original Bellman
equation we would like to solve.

▶ But it is an operator that is much cheaper to apply. So we may want to
apply it more than once.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 19 / 45

Policy Iteration

▶ Maximization step can be time consuming. So it seems like a waste to
use the new policy for only one period in updating to Vn+1 .

▶ A simple but key insight is that Ts̃n (in eq. 2) is also a contraction
mapping with modulus 𝛽.

→ if we apply Ts̃n repeatedly, it also converges to a fixed point itself at
rate 𝛽 .

▶ Of course, this fixed point is not the solution of the original Bellman
equation we would like to solve.

▶ But it is an operator that is much cheaper to apply. So we may want to
apply it more than once.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 19 / 45

Policy Iteration

▶ Maximization step can be time consuming. So it seems like a waste to
use the new policy for only one period in updating to Vn+1 .

▶ A simple but key insight is that Ts̃n (in eq. 2) is also a contraction
mapping with modulus 𝛽.

→ if we apply Ts̃n repeatedly, it also converges to a fixed point itself at
rate 𝛽 .

▶ Of course, this fixed point is not the solution of the original Bellman
equation we would like to solve.

▶ But it is an operator that is much cheaper to apply. So we may want to
apply it more than once.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 19 / 45

Policy Iteration

▶ Maximization step can be time consuming. So it seems like a waste to
use the new policy for only one period in updating to Vn+1 .

▶ A simple but key insight is that Ts̃n (in eq. 2) is also a contraction
mapping with modulus 𝛽.

→ if we apply Ts̃n repeatedly, it also converges to a fixed point itself at
rate 𝛽 .

▶ Of course, this fixed point is not the solution of the original Bellman
equation we would like to solve.

▶ But it is an operator that is much cheaper to apply. So we may want to
apply it more than once.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 19 / 45

Algorithmus 2 : VFI WITH POLICY ITERATION ALGORITHM

1 Set n = 0. Choose an initial guess V0 ∈ S.

2 Obtain s̃n as in (1) and take the updated value function to be:
Vn+1 = limm→∞ Tms̃nVn, which is the (fixed point) value function resulting
from using policy s̃n forever.

3 Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 1.

VFI vs Howard’s Algorithm

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 21 / 45

Two Properties of Howard’s Algorithm

Puterman and Brumelle (1979) show that:

▶ Policy iteration is equivalent to the Newton-Kantarovich method
applied to dynamic programming.

▶ Thus, it inherits two properties of Newton’s method:

1 it is guaranteed to converge to the true solution when the initial point, V0,
is in the domain of attraction of V∗, and

2 when (i) is satisfied, it converges at a quadratic rate in iteration index n.

▶ Bad news: no more global convergence like VFI (unless state space is
discrete)

▶ Good news: potentially very fast convergence.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 22 / 45

Two Properties of Howard’s Algorithm

Puterman and Brumelle (1979) show that:

▶ Policy iteration is equivalent to the Newton-Kantarovich method
applied to dynamic programming.

▶ Thus, it inherits two properties of Newton’s method:

1 it is guaranteed to converge to the true solution when the initial point, V0,
is in the domain of attraction of V∗, and

2 when (i) is satisfied, it converges at a quadratic rate in iteration index n.

▶ Bad news: no more global convergence like VFI (unless state space is
discrete)

▶ Good news: potentially very fast convergence.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 22 / 45

Two Properties of Howard’s Algorithm

Puterman and Brumelle (1979) show that:

▶ Policy iteration is equivalent to the Newton-Kantarovich method
applied to dynamic programming.

▶ Thus, it inherits two properties of Newton’s method:

1 it is guaranteed to converge to the true solution when the initial point, V0,
is in the domain of attraction of V∗, and

2 when (i) is satisfied, it converges at a quadratic rate in iteration index n.

▶ Bad news: no more global convergence like VFI (unless state space is
discrete)

▶ Good news: potentially very fast convergence.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 22 / 45

Two Properties of Howard’s Algorithm

Puterman and Brumelle (1979) show that:

▶ Policy iteration is equivalent to the Newton-Kantarovich method
applied to dynamic programming.

▶ Thus, it inherits two properties of Newton’s method:

1 it is guaranteed to converge to the true solution when the initial point, V0,
is in the domain of attraction of V∗, and

2 when (i) is satisfied, it converges at a quadratic rate in iteration index n.

▶ Bad news: no more global convergence like VFI (unless state space is
discrete)

▶ Good news: potentially very fast convergence.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 22 / 45

Modified Policy Iteration

Caution:

▶ Quadratic convergence is a bit misleading: this is the rate in n.

In contrast to VFI, Howard’s algorithm takes a lot of time to evaluate step
2.

▶ So overall, it may not be much faster when the state space is large and
if m is too large.

▶ Second, the basin of attraction can be small.

Your algorithm can keep crashing!

▶ These can be fixed by slightly modifying the algorithm.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 23 / 45

Modified Policy Iteration

Caution:

▶ Quadratic convergence is a bit misleading: this is the rate in n.

In contrast to VFI, Howard’s algorithm takes a lot of time to evaluate step
2.

▶ So overall, it may not be much faster when the state space is large and
if m is too large.

▶ Second, the basin of attraction can be small.

Your algorithm can keep crashing!

▶ These can be fixed by slightly modifying the algorithm.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 23 / 45

Modified Policy Iteration

Caution:

▶ Quadratic convergence is a bit misleading: this is the rate in n.

In contrast to VFI, Howard’s algorithm takes a lot of time to evaluate step
2.

▶ So overall, it may not be much faster when the state space is large and
if m is too large.

▶ Second, the basin of attraction can be small.

Your algorithm can keep crashing!

▶ These can be fixed by slightly modifying the algorithm.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 23 / 45

Modified Policy Iteration

Caution:

▶ Quadratic convergence is a bit misleading: this is the rate in n.

In contrast to VFI, Howard’s algorithm takes a lot of time to evaluate step
2.

▶ So overall, it may not be much faster when the state space is large and
if m is too large.

▶ Second, the basin of attraction can be small.

Your algorithm can keep crashing!

▶ These can be fixed by slightly modifying the algorithm.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 23 / 45

VFI with Modified Policy Iteration Algorithm

▶ Modify Step 2 of Howard’s algorithm:

Obtain s̃n as in (1) and update the value function to be: Vn+1 = Tms̃nVn,
which entails m applications of Howard’s mapping to obtain Vn+1 .

▶ The choice of m will be a key decision to make.

HW #1 asks you to experiment to see the tradeoffs.

We will also see some benchmarking results in Lecture 4 to help guide
this choice.

▶ Note: In some cases we will see later, the iteration will be unstable or
will not converge smoothly. In such cases, it will be optimal to slow
down (or dampen) rather than accelerate the Bellman iteration
(effectively m < 1). This is how →

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 24 / 45

VFI with Modified Policy Iteration Algorithm

▶ Modify Step 2 of Howard’s algorithm:

Obtain s̃n as in (1) and update the value function to be: Vn+1 = Tms̃nVn,
which entails m applications of Howard’s mapping to obtain Vn+1 .

▶ The choice of m will be a key decision to make.

HW #1 asks you to experiment to see the tradeoffs.

We will also see some benchmarking results in Lecture 4 to help guide
this choice.

▶ Note: In some cases we will see later, the iteration will be unstable or
will not converge smoothly. In such cases, it will be optimal to slow
down (or dampen) rather than accelerate the Bellman iteration
(effectively m < 1). This is how →

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 24 / 45

VFI with Modified Policy Iteration Algorithm

▶ Modify Step 2 of Howard’s algorithm:

Obtain s̃n as in (1) and update the value function to be: Vn+1 = Tms̃nVn,
which entails m applications of Howard’s mapping to obtain Vn+1 .

▶ The choice of m will be a key decision to make.

HW #1 asks you to experiment to see the tradeoffs.

We will also see some benchmarking results in Lecture 4 to help guide
this choice.

▶ Note: In some cases we will see later, the iteration will be unstable or
will not converge smoothly. In such cases, it will be optimal to slow
down (or dampen) rather than accelerate the Bellman iteration
(effectively m < 1). This is how →

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 24 / 45

Dampened VFI Algorithm

Modify Step 2 of the VFI algorithm as follows:

2∗ . Obtain Jn+1 from Vn by applying the standard Bellman mapping:

Jn+1 = TVn,

(i.e., maximize RHS of the Bellman equation and evaluate with the new
optimal policy.)

3∗ . Obtain Vn+1 by taking a convex combination of Jn+1 and Vn :

Vn+1 = 𝜃 Jn+1 + (1 − 𝜃)Vn with 𝜃 ∈ (0, 1] .

4∗ . Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 1.

▶ Note: VFI corresponds to 𝜃 = 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 25 / 45

Dampened VFI Algorithm

Modify Step 2 of the VFI algorithm as follows:

2∗ . Obtain Jn+1 from Vn by applying the standard Bellman mapping:

Jn+1 = TVn,

(i.e., maximize RHS of the Bellman equation and evaluate with the new
optimal policy.)

3∗ . Obtain Vn+1 by taking a convex combination of Jn+1 and Vn :

Vn+1 = 𝜃 Jn+1 + (1 − 𝜃)Vn with 𝜃 ∈ (0, 1] .

4∗ . Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 1.

▶ Note: VFI corresponds to 𝜃 = 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 25 / 45

Dampened VFI Algorithm

Modify Step 2 of the VFI algorithm as follows:

2∗ . Obtain Jn+1 from Vn by applying the standard Bellman mapping:

Jn+1 = TVn,

(i.e., maximize RHS of the Bellman equation and evaluate with the new
optimal policy.)

3∗ . Obtain Vn+1 by taking a convex combination of Jn+1 and Vn :

Vn+1 = 𝜃 Jn+1 + (1 − 𝜃)Vn with 𝜃 ∈ (0, 1] .

4∗ . Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 1.

▶ Note: VFI corresponds to 𝜃 = 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 25 / 45

Dampened VFI Algorithm

Modify Step 2 of the VFI algorithm as follows:

2∗ . Obtain Jn+1 from Vn by applying the standard Bellman mapping:

Jn+1 = TVn,

(i.e., maximize RHS of the Bellman equation and evaluate with the new
optimal policy.)

3∗ . Obtain Vn+1 by taking a convex combination of Jn+1 and Vn :

Vn+1 = 𝜃 Jn+1 + (1 − 𝜃)Vn with 𝜃 ∈ (0, 1] .

4∗ . Stop if convergence criteria satisfied: |Vn+1 − Vn | < toler. Otherwise,
increase n and return to step 1.

▶ Note: VFI corresponds to 𝜃 = 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 25 / 45

MacQueen-Porteus Bounds

Error Bounds: Background

▶ In iterative numerical algorithms, we need a stopping rule.

▶ In dynamic programming, we want to know how far we are from the
true solution in each iteration.

▶ Contraction mapping theorem can be used to show:

∥V∗ − Vk∥∞ ≤ 1
1 − 𝛽

∥Vk+1 − Vk∥∞ .

▶ So if we want to stop when the value function is 𝜀 away from the true
solution, our stopping criterion is:

∥Vk+1 − Vk∥∞ < 𝜀 × (1 − 𝛽).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 26 / 45

Error Bounds: Background

▶ In iterative numerical algorithms, we need a stopping rule.

▶ In dynamic programming, we want to know how far we are from the
true solution in each iteration.

▶ Contraction mapping theorem can be used to show:

∥V∗ − Vk∥∞ ≤ 1
1 − 𝛽

∥Vk+1 − Vk∥∞ .

▶ So if we want to stop when the value function is 𝜀 away from the true
solution, our stopping criterion is:

∥Vk+1 − Vk∥∞ < 𝜀 × (1 − 𝛽).

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 26 / 45

Two Remarks

1 This bound is for the worst case scenario (sup-norm). If V∗ varies over
a wide range, this bound will (typically) be misleading—too pessimistic.

Consider u(c) = c1−𝛼
1−𝛼 with 𝛼 = RRA = 10. V will cover an enormous range of

values. Bound will be too pessimistic.

2 Another issue is how to choose 𝜀 . Deviation in V space does not have a
natural mapping into economic magnitudes we care about since V
does not have a natural scale.

▶ One way to address both issues is by defining the stopping rule in the
policy function space:

It is typically easier to judge what it means to consume or save x% less
than optimal (caution: we will see exceptions!)

Also: Policy functions converge faster than values, so this typically allows
stopping sooner.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 27 / 45

Two Remarks

1 This bound is for the worst case scenario (sup-norm). If V∗ varies over
a wide range, this bound will (typically) be misleading—too pessimistic.

Consider u(c) = c1−𝛼
1−𝛼 with 𝛼 = RRA = 10. V will cover an enormous range of

values. Bound will be too pessimistic.

2 Another issue is how to choose 𝜀 . Deviation in V space does not have a
natural mapping into economic magnitudes we care about since V
does not have a natural scale.

▶ One way to address both issues is by defining the stopping rule in the
policy function space:

It is typically easier to judge what it means to consume or save x% less
than optimal (caution: we will see exceptions!)

Also: Policy functions converge faster than values, so this typically allows
stopping sooner.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 27 / 45

Two Remarks

1 This bound is for the worst case scenario (sup-norm). If V∗ varies over
a wide range, this bound will (typically) be misleading—too pessimistic.

Consider u(c) = c1−𝛼
1−𝛼 with 𝛼 = RRA = 10. V will cover an enormous range of

values. Bound will be too pessimistic.

2 Another issue is how to choose 𝜀 . Deviation in V space does not have a
natural mapping into economic magnitudes we care about since V
does not have a natural scale.

▶ One way to address both issues is by defining the stopping rule in the
policy function space:

It is typically easier to judge what it means to consume or save x% less
than optimal (caution: we will see exceptions!)

Also: Policy functions converge faster than values, so this typically allows
stopping sooner.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 27 / 45

MacQueen-Porteus Bounds

Consider a different formulation for a dynamic programming problem:

V(xi) = max
y∈Γ (xi)

U(xi, y) + 𝛽
J∑
j=1

𝜋ij (y)V(xj)
 , (3)

▶ State space is discrete.
▶ But choices are continuous.
▶ Allows for simple modeling of interesting problems.
▶ Popular formulation in other fields using dynamic programming.

See, e.g., Bertsekas and Shreve (1978) which is a wonderful book on DP, or
Bertsekas and Ozdaglar (2009) for a more up to date comprehensive
treatment.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 28 / 45

MacQueen-Porteus Bounds

Theorem 1
[MacQueen-Porteus bounds] Consider

V(xi) = max
y∈Γ (xi)

U(xi, y) + 𝛽
J∑
j=1

𝜋ij (y)V(xj)
 , (4)

define

cn =
𝛽

1 − 𝛽
×min [Vn − Vn−1] cn =

𝛽

1 − 𝛽
×max [Vn − Vn−1] (5)

Then, for all x ∈ X, we have:

TnV0 (x) + cn ≤ V∗ (x) ≤ TnV0 (x) + cn . (6)

Furthermore, with each iteration, the two bounds approach the true
solution monotonically.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 29 / 45

VFI versus McQueen-Porteus Bounds

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 30 / 45

MQP Bounds: Comments

▶ MQP bounds can be quite tight.
▶ Example: Suppose Vn (x) − Vn−1 (x) = 𝛼 for all x and that 𝛼 = 100 (a large

number).

▶ The usual bound implies: ∥V∗ − Vn∥∞ ≤ 1
1−𝛽

Vn (x) − Vn−1 (x)

∞ = 𝛼

1−𝛽 , so
we would keep iterating.

▶ MQP implies cn = cn = 𝛼, which the then implies

𝛼𝛽

1 − 𝛽
= V∗ (x) − TnV0 (x) =

𝛼𝛽

1 − 𝛽
.

▶ We find V∗ (x) = Vn (x) + 𝛼𝛽
1−𝛽 , in one step!

▶ MQP: both lower and upper bound for signed difference.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 31 / 45

MQP Bounds: Comments

▶ MQP bounds can be quite tight.
▶ Example: Suppose Vn (x) − Vn−1 (x) = 𝛼 for all x and that 𝛼 = 100 (a large

number).
▶ The usual bound implies: ∥V∗ − Vn∥∞ ≤ 1

1−𝛽
Vn (x) − Vn−1 (x)

∞ = 𝛼

1−𝛽 , so
we would keep iterating.

▶ MQP implies cn = cn = 𝛼, which the then implies

𝛼𝛽

1 − 𝛽
= V∗ (x) − TnV0 (x) =

𝛼𝛽

1 − 𝛽
.

▶ We find V∗ (x) = Vn (x) + 𝛼𝛽
1−𝛽 , in one step!

▶ MQP: both lower and upper bound for signed difference.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 31 / 45

MQP Bounds: Comments

▶ MQP bounds can be quite tight.
▶ Example: Suppose Vn (x) − Vn−1 (x) = 𝛼 for all x and that 𝛼 = 100 (a large

number).
▶ The usual bound implies: ∥V∗ − Vn∥∞ ≤ 1

1−𝛽
Vn (x) − Vn−1 (x)

∞ = 𝛼

1−𝛽 , so
we would keep iterating.

▶ MQP implies cn = cn = 𝛼, which the then implies

𝛼𝛽

1 − 𝛽
= V∗ (x) − TnV0 (x) =

𝛼𝛽

1 − 𝛽
.

▶ We find V∗ (x) = Vn (x) + 𝛼𝛽
1−𝛽 , in one step!

▶ MQP: both lower and upper bound for signed difference.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 31 / 45

VFI Acceleration with MacQueen-Porteus Bounds

Algorithmus 3 : VFI WITH MACQUEEN-PORTEUS ERROR BOUNDS

[Step 2’:] Stop when cn − cn < toler. Then take the final estimate of V∗
to be either the median

Ṽ = TnV0 +
(cn + cn

2

)
or the mean (i.e., average error bound across states):

V̂ = TnV0 +
𝛽

n(1 − 𝛽)

n∑
i=1

(
TnV0 (xi) − Tn−1V0 (xi)

)
.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 32 / 45

MQP: Convergence Rate

▶ Bertsekas (1987) derives the convergence rate of MQP bounds
algorithm

▶ It is proportional to the subdominant eigenvalue of 𝜋ij (y∗) (the
transition matrix evaluated at optimal policy).

▶ VFI is proportional to the dominant eigenvalue, which is always 1.
Multiplied by 𝛽, gives convergence rate.

▶ Subdominant (2nd largest) eigenvalue (|𝜆2 |) is sometimes ≪ 1 and
sometimes not:

AR(1) process, discretized: |𝜆2 | = 𝜌 (persistence parameter)
More than 1 ergodic set: |𝜆2 | = 1.

▶ When persistence is low, this can lead to substantial improvements in
speed.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 33 / 45

MQP: Convergence Rate

▶ Bertsekas (1987) derives the convergence rate of MQP bounds
algorithm

▶ It is proportional to the subdominant eigenvalue of 𝜋ij (y∗) (the
transition matrix evaluated at optimal policy).

▶ VFI is proportional to the dominant eigenvalue, which is always 1.
Multiplied by 𝛽, gives convergence rate.

▶ Subdominant (2nd largest) eigenvalue (|𝜆2 |) is sometimes ≪ 1 and
sometimes not:

AR(1) process, discretized: |𝜆2 | = 𝜌 (persistence parameter)
More than 1 ergodic set: |𝜆2 | = 1.

▶ When persistence is low, this can lead to substantial improvements in
speed.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 33 / 45

MQP: Convergence Rate

▶ Bertsekas (1987) derives the convergence rate of MQP bounds
algorithm

▶ It is proportional to the subdominant eigenvalue of 𝜋ij (y∗) (the
transition matrix evaluated at optimal policy).

▶ VFI is proportional to the dominant eigenvalue, which is always 1.
Multiplied by 𝛽, gives convergence rate.

▶ Subdominant (2nd largest) eigenvalue (|𝜆2 |) is sometimes ≪ 1 and
sometimes not:

AR(1) process, discretized: |𝜆2 | = 𝜌 (persistence parameter)
More than 1 ergodic set: |𝜆2 | = 1.

▶ When persistence is low, this can lead to substantial improvements in
speed.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 33 / 45

Benchmarking MQP and PI

𝛽 : time discount factor, m : # of Howard iterations, 𝛾 : relative risk aversion.

Table 1: Mc-Queen Porteus Bounds and Policy Iteration

𝛽 → 0.95 0.99 0.999

m : 0 50 500 0 50 500 0 50 500

MQP (RRA) 𝛾 = 1

no 14.99 1.07 1.00∗ 26.48 1.28 1.00∗ 33.29 1.41 1.00∗

yes 0.32 0.60 0.79 0.10 0.23 0.27 0.01 0.03 0.04

(RRA) 𝛾 = 5

no 13.03 0.96 1.00∗ 26.77 1.28 1.00∗ 33.37 1.45 1.00∗

yes 0.67 0.67 0.69 0.14 0.24 0.30 0.02 0.04 0.06

∗Time normalized to 1 for the Howard run with m = 500 and without MQP.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 34 / 45

Takeaways from the Example

1 Relative to plain VFI (m = 0):
Modified Howard algorithm alone speeds up by 13 to 33 times
MQP speeds up by 19 to 3300 times.

2 Both algorithms most useful when 𝛽 is high (which is a robust
conclusion)

3 The two algorithms are not additive or even always complements:

When MQP is used, adding Howard’s iteration slows down the solution
(notice rising times in second rows)

When Howard is used, MQP still speeds up solution but less than before:
by as low as 1.5 fold for 𝛽 = 0.95 but as high as 25 fold for higher 𝛽.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 35 / 45

Takeaways (Cont’d)

▶ Important note: These numbers are not written in stone! Your mileage
will vary depending on the complexity of the problem and other
factors.

▶ For example:
In GE models, especially with more than one asset (or price) or other
challenging features, using high Howard iterations early on may cause the
algorithm to crash.

In practice, I have used m values as high as 20 or even 50 in simpler
problems and lower in more complex ones (and often m < 1 early in GE
iterations!).

Be cautious and experiment until you find the sweet spot.

▶ To sum up, when EGM is not feasible, a combination of Howard and
MQP is a good default to use.

▶ Even with EGM, MQP and Howard can help further speed up the code.
Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 36 / 45

Endogenous Grid Method

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).
▶ Slow for three reasons:

1 This is a non-linear equation in k′.
2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).
▶ Slow for three reasons:

1 This is a non-linear equation in k′.
2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).

▶ Slow for three reasons:

1 This is a non-linear equation in k′.
2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).
▶ Slow for three reasons:

1 This is a non-linear equation in k′.
2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).
▶ Slow for three reasons:

1 This is a non-linear equation in k′.

2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

Endogenous Grid Method

▶ In standard VFI, we have

c−𝛾 = 𝛽E
(
Vk (k′, z′) |zj

)
.

▶ This equation can be rewritten (by substituting out consumption using
the budget constraint) as(

zjki𝛼 + (1 − 𝛿)ki − k′
)−𝛾 = 𝛽E

(
Vk (k′, z′) |zj

)
, (7)

▶ In VFI, we solve for k′ for each grid point today (ki, zj).
▶ Slow for three reasons:

1 This is a non-linear equation in k′.
2 V(ki, zj) is stored at grid points, so for every trial value of k′, we need to:

2.1 evaluate the conditional expectation (since k′ appears inside the
expectation), and

2.2 interpolate to obtain off-grid values V(k′, z′j) for each z′j .

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 38 / 45

EGM

▶ View the problem differently:

V
(
k, zj

)
= max

c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E
(
V
(
k′i , z

′) |zj)}
s.t c + k′i = zjk𝛼 + (1 − 𝛿)k (P3)

ln z′ = 𝜌 ln zj + 𝜂′,

▶ Now the same FOC as before:(
zjk𝛼 + (1 − 𝛿)k − k′i

)−𝛾 = 𝛽E
(
Vk

(
k′i , z

′) |zj) , (8)

but solve for k as a function of k′i and zj :

zjk𝛼 + (1 − 𝛿)k =
[
𝛽E

(
Vk

(
k′i , z

′) |zj)]−1/𝛾 + k′i .

▶ Trick 1: RHS is now entirely on the (k′i , zj) grid. So, no need to
interpolate/integrate RHS repeatedly as before! (Solve problems 2.1, 2.2
above).

▶ Problem 1 still remains: LHS still nonlinear in k.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 39 / 45

EGM

▶ View the problem differently:

V
(
k, zj

)
= max

c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E
(
V
(
k′i , z

′) |zj)}
s.t c + k′i = zjk𝛼 + (1 − 𝛿)k (P3)

ln z′ = 𝜌 ln zj + 𝜂′,

▶ Now the same FOC as before:(
zjk𝛼 + (1 − 𝛿)k − k′i

)−𝛾 = 𝛽E
(
Vk

(
k′i , z

′) |zj) , (8)

but solve for k as a function of k′i and zj :

zjk𝛼 + (1 − 𝛿)k =
[
𝛽E

(
Vk

(
k′i , z

′) |zj)]−1/𝛾 + k′i .

▶ Trick 1: RHS is now entirely on the (k′i , zj) grid. So, no need to
interpolate/integrate RHS repeatedly as before! (Solve problems 2.1, 2.2
above).

▶ Problem 1 still remains: LHS still nonlinear in k.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 39 / 45

EGM

▶ View the problem differently:

V
(
k, zj

)
= max

c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E
(
V
(
k′i , z

′) |zj)}
s.t c + k′i = zjk𝛼 + (1 − 𝛿)k (P3)

ln z′ = 𝜌 ln zj + 𝜂′,

▶ Now the same FOC as before:(
zjk𝛼 + (1 − 𝛿)k − k′i

)−𝛾 = 𝛽E
(
Vk

(
k′i , z

′) |zj) , (8)

but solve for k as a function of k′i and zj :

zjk𝛼 + (1 − 𝛿)k =
[
𝛽E

(
Vk

(
k′i , z

′) |zj)]−1/𝛾 + k′i .

▶ Trick 1: RHS is now entirely on the (k′i , zj) grid. So, no need to
interpolate/integrate RHS repeatedly as before! (Solve problems 2.1, 2.2
above).

▶ Problem 1 still remains: LHS still nonlinear in k.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 39 / 45

EGM

▶ View the problem differently:

V
(
k, zj

)
= max

c,k′

{
c1−𝛾
1 − 𝛾

+ 𝛽E
(
V
(
k′i , z

′) |zj)}
s.t c + k′i = zjk𝛼 + (1 − 𝛿)k (P3)

ln z′ = 𝜌 ln zj + 𝜂′,

▶ Now the same FOC as before:(
zjk𝛼 + (1 − 𝛿)k − k′i

)−𝛾 = 𝛽E
(
Vk

(
k′i , z

′) |zj) , (8)

but solve for k as a function of k′i and zj :

zjk𝛼 + (1 − 𝛿)k =
[
𝛽E

(
Vk

(
k′i , z

′) |zj)]−1/𝛾 + k′i .

▶ Trick 1: RHS is now entirely on the (k′i , zj) grid. So, no need to
interpolate/integrate RHS repeatedly as before! (Solve problems 2.1, 2.2
above).

▶ Problem 1 still remains: LHS still nonlinear in k.
Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 39 / 45

EGM

▶ Trick 2: Define
Y ≡ zk𝛼 + (1 − 𝛿)k (9)

and rewrite the Bellman equation (without discretization) as:

V (Y, z) = max
k′

{
(Y − k′)1−𝛾

1 − 𝛾
+ 𝛽E (V (Y′, z′) |z)

}
s.t ln z′ = 𝜌 ln z + 𝜂′ .

▶ <2->Key observation: Y′ is only a function of k′i and z′, so we can write
the conditional expectation on the right hand side as:

V(k′i , zj) ≡ 𝛽E
(
V

(
Y′ (k′i , z

′), z′
)
|zj
)
.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 40 / 45

EGM

▶ Plug V back into modified Bellman:

V (Y, z) = max
k′

{
(Y − k′)1−𝛾

1 − 𝛾
+ V(k′i , zj)

}

▶ Now the FOC of this new problem becomes:

c∗ (k′i , zj)
−𝛾 = Vk′ (k′i , zj) . (10)

▶ Magic! This equation gives us consumption in one step:
without searching over values of k′—hence avoiding repeated
interpolation and integration!
without solving a nonlinear equation in k′

▶ Once c∗ (k′i , zj) is obtained, use the resource constraint to compute
today’s end-of-period resources: Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i as well as

V
(
Y∗ (k′i , zj), zj

)
=

(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ V(k′i , zj)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 41 / 45

EGM

▶ Plug V back into modified Bellman:

V (Y, z) = max
k′

{
(Y − k′)1−𝛾

1 − 𝛾
+ V(k′i , zj)

}
▶ Now the FOC of this new problem becomes:

c∗ (k′i , zj)
−𝛾 = Vk′ (k′i , zj) . (10)

▶ Magic! This equation gives us consumption in one step:
without searching over values of k′—hence avoiding repeated
interpolation and integration!
without solving a nonlinear equation in k′

▶ Once c∗ (k′i , zj) is obtained, use the resource constraint to compute
today’s end-of-period resources: Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i as well as

V
(
Y∗ (k′i , zj), zj

)
=

(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ V(k′i , zj)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 41 / 45

EGM

▶ Plug V back into modified Bellman:

V (Y, z) = max
k′

{
(Y − k′)1−𝛾

1 − 𝛾
+ V(k′i , zj)

}
▶ Now the FOC of this new problem becomes:

c∗ (k′i , zj)
−𝛾 = Vk′ (k′i , zj) . (10)

▶ Magic! This equation gives us consumption in one step:
without searching over values of k′—hence avoiding repeated
interpolation and integration!
without solving a nonlinear equation in k′

▶ Once c∗ (k′i , zj) is obtained, use the resource constraint to compute
today’s end-of-period resources: Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i as well as

V
(
Y∗ (k′i , zj), zj

)
=

(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ V(k′i , zj)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 41 / 45

EGM

▶ Plug V back into modified Bellman:

V (Y, z) = max
k′

{
(Y − k′)1−𝛾

1 − 𝛾
+ V(k′i , zj)

}
▶ Now the FOC of this new problem becomes:

c∗ (k′i , zj)
−𝛾 = Vk′ (k′i , zj) . (10)

▶ Magic! This equation gives us consumption in one step:
without searching over values of k′—hence avoiding repeated
interpolation and integration!
without solving a nonlinear equation in k′

▶ Once c∗ (k′i , zj) is obtained, use the resource constraint to compute
today’s end-of-period resources: Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i as well as

V
(
Y∗ (k′i , zj), zj

)
=

(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ V(k′i , zj)

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 41 / 45

EGM: The Algorithm

0: Set n = 0. Construct a grid for tomorrow’s capital and today’s shock:
(k′i , zj). Choose an initial guess V0 (k′i , zj).

1: For all i, j, obtain

c∗ (k′i , zj) =
(
Vn
k (k

′
i , zj)

)−1/𝛾
.

2: Obtain today’s end-of-period resources as a function of tomorrow’s
capital and today’s shock:

Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i ,

and today’s updated value function,

Vn+1 (Y∗ (k′i , zj), zj) =
(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ Vn (k′i , zj)

by plugging in consumption decision into the RHS.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 42 / 45

EGM: The Algorithm

0: Set n = 0. Construct a grid for tomorrow’s capital and today’s shock:
(k′i , zj). Choose an initial guess V0 (k′i , zj).

1: For all i, j, obtain

c∗ (k′i , zj) =
(
Vn
k (k

′
i , zj)

)−1/𝛾
.

2: Obtain today’s end-of-period resources as a function of tomorrow’s
capital and today’s shock:

Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i ,

and today’s updated value function,

Vn+1 (Y∗ (k′i , zj), zj) =
(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ Vn (k′i , zj)

by plugging in consumption decision into the RHS.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 42 / 45

EGM: The Algorithm

0: Set n = 0. Construct a grid for tomorrow’s capital and today’s shock:
(k′i , zj). Choose an initial guess V0 (k′i , zj).

1: For all i, j, obtain

c∗ (k′i , zj) =
(
Vn
k (k

′
i , zj)

)−1/𝛾
.

2: Obtain today’s end-of-period resources as a function of tomorrow’s
capital and today’s shock:

Y∗ (k′i , zj) = c∗ (k′i , zj) + k′i ,

and today’s updated value function,

Vn+1 (Y∗ (k′i , zj), zj) =
(
c∗ (k′i , zj)

)1−𝛾
1 − 𝛾

+ Vn (k′i , zj)

by plugging in consumption decision into the RHS.
Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 42 / 45

EGM: The Algorithm (Cont’d)

3: Interpolate Vn+1 to obtain its values on a grid of tomorrow’s
end-of-period resources: Y′ = z′ (k′i)

𝛼 + (1 − 𝛿)k′i .

4: Obtain
Vn+1 (k′i , zj) = 𝛽E

(
Vn+1 (Y′ (k′i , z′), z′) |zj) .

5: Stop if convergence criterion is satisfied and obtain
beginning-of-period capital, k, by solving the nonlinear equation
Yn∗ (i, j) ≡ zjk𝛼 + (1 − 𝛿)k, for all i, j. Otherwise, go to step 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 43 / 45

EGM: The Algorithm (Cont’d)

3: Interpolate Vn+1 to obtain its values on a grid of tomorrow’s
end-of-period resources: Y′ = z′ (k′i)

𝛼 + (1 − 𝛿)k′i .

4: Obtain
Vn+1 (k′i , zj) = 𝛽E

(
Vn+1 (Y′ (k′i , z′), z′) |zj) .

5: Stop if convergence criterion is satisfied and obtain
beginning-of-period capital, k, by solving the nonlinear equation
Yn∗ (i, j) ≡ zjk𝛼 + (1 − 𝛿)k, for all i, j. Otherwise, go to step 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 43 / 45

EGM: The Algorithm (Cont’d)

3: Interpolate Vn+1 to obtain its values on a grid of tomorrow’s
end-of-period resources: Y′ = z′ (k′i)

𝛼 + (1 − 𝛿)k′i .

4: Obtain
Vn+1 (k′i , zj) = 𝛽E

(
Vn+1 (Y′ (k′i , z′), z′) |zj) .

5: Stop if convergence criterion is satisfied and obtain
beginning-of-period capital, k, by solving the nonlinear equation
Yn∗ (i, j) ≡ zjk𝛼 + (1 − 𝛿)k, for all i, j. Otherwise, go to step 1.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 43 / 45

Comments

▶ Whenever EGM can be applied, it should be your default choice. It can
easily be 1-2 orders of magnitude faster than VFI with acceleration
methods.

▶ Extensions and Limitations:

Two choice variables can be handled with some loss of efficiency. See
Barillas and Fernandez-Villaverde (JEDC 2007) and Maliar and Maliar
(2013).

Two state variables: currently no “simple” solution that keeps accuracy
intact.

Borrowing constraints: Very easy to deal with.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 44 / 45

Is This Worth the Trouble? Yes!

𝛽

Utility 0.95 0.98 0.99 0.995

VFI 28.9 74 119 247

VFI + Howard 7.17 18.2 29.5 53

VFI + Howard + MQP 7.17 16.5 26 38

VFI + Howard + MQP +100 grid 2.15 5.2 8.2 12

EGM (expanding grid curv=2) 0.38 0.94 1.92 4

Table 2: Time for convergence (seconds)

▶ RRA=2; 300 points in capital grid, expanding grid with exponent of 3.

Fatih Guvenen University of Minnesota Lecture 1: Dynamic Programming 45 / 45

	Simple Analytical Example
	Numerical Value Function Iteration (VFI)
	MacQueen-Porteus Bounds

