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Interpolation



Introduction

▶ A value function with continuous state variables—e.g., V(k, z)—is an
infinite-dimensional object.

▶ How do we represent it on a computer? How do we solve for it?

▶ One idea: Discretize k and z very finely and save values of V at all grid
points.

▶ Problem: Sacrifice accuracy (if grid is coarse) or run into feasibility
problems (if it’s too fine).

▶ Example: Median wealth < $10,000. Mean of top 0.01% group: ~$250M.
How many grid points to take?

▶ Limits number of continuous state variables you can use.

▶ Better idea: Define V(k, z) := V(ki, zj) for i = 1, 2, ..., I and j = 1, 2, ..., J +
an interpolation method for all off-grid points.
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First: Function Approximation vs. Interpolation

▶ Suppose you are given a grid (x1, x2,..., xn) and the function values
(y1, y2, ..., yn) at corresponding points generated by function f(x).

▶ Q: How to find values off the grid points that provide a “good
approximation” to f(x)?

▶ A good approximation is often taken to mean to minimize
∥∥∥f(x) − f̂(x)

∥∥∥
according to some norm (Lp, sup-, etc).

▶ In economics, often another important concern is to preserve the
shape—i.e., concavity or convexity—of the approximated (e.g, utility or
value) function

▶ Interpolation: Further require that f̂(x) = f(xj) = yj for all j = 1, 2, ...,n;
e.g., the interpolant must coincide with actual function values at all
grid points.
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Polynomial Approximation

▶ Weierstrass Approximation Theorem. Suppose f is a continuous
real-valued function defined on the real interval [a, b]. For a given ε > 0, there
exists a polynomial of order n, Pn(x), such that for all x in [a, b], we have
∥f(x) − Pn(x)∥∞ < ε. In the limit, limn→∞ ∥f(x) − Pn(x)∥∞ = 0.

▶ Runge Example. Let f(x) = 1/(1+ x2) on [−5, 5], and let Lmf be the
unique polynomial of order m that interpolates f at m equally-spaced
points. Then:

lim sup
m→∞ |f(x) − Lmf| =

{
0 if |x| < 3.633...,∞ if |x| > 3.633...

▶ How can Runge example not contradict the Weierstrass Thm?

▶ Weierstrass does not provide a way of finding the right Pn(x) and
Runge example shows a naive approach can fail spectacularly. (Who
said equally-spaced points, right?)
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Runge Example
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▶ We will learn more about the different interpolation schemes seen in
this example.
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Spline Interpolation: Three Objectives

▶ As in the Runge example, higher-order polynomials are flexible but can
easily display wild oscillations → not ideal for interpolation.

▶ Idea behind cubic splines: Easier to approximate functions over
smaller intervals. So, rather than one global polynomial of high
degree, use piecewise polynomials of lower degree.

▶ Cubic Splines:

1 Match the function values at grid points (y1, y2, ..., yn) exactly.

2 Generate first derivatives that are continuous and differentiable for all
x ∈ [x1, xn].

3 Generate second derivatives that are continuous for all x ∈ [x1, xn]
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Splines: An Optimality Result

▶ Consider the following minimization problem:

min
f
RSS(f, λ) =

N∑
i

{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt,

where λ is a fixed positive smoothing parameter.

▶ λ = 0: Any interpolating function is a solution

▶ λ = ∞: linear least squares fit, since curvature has infinite cost.

▶ Question: When λ ∈ (0,∞), is there a solution? is it unique? can we
find it?

▶ Answer: In the (infinite-dimensional) Sobolev space of functions (finite
f ′′), there is a unique solution, which is the natural cubic spline
interpolation with knots at {x1, x2, ..., xN}!
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Splines: Building from Ground Up

▶ Begin with the interval between two generic knots, xi and xi+1. If we
were to construct a linear interpolant:

y = Ayj + Byj+1

A(x) ≡
xj+1 − x
xj+1 − xj

B(x) ≡ 1− A =
x− xj

xj+1 − xj
(1)

x

y

▶ Although linear interpolation is sometimes useful, it has important
shortcomings:

First derivative changes abruptly at knot points, i.e., interpolants have as
many kinks as the knot points.
Second derivative does not exist at knot points.
→ Can create many problems, e.g., with derivative-based algorithms, etc.

▶ Question: How to modify (1) to fix these problems?
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Visualizing Linear vs Spline Interpolation

x

y

(a) Linear
x

y
y

(b) Bicubic

Figure 1: Linear and Bi-cubic Interpolation

▶ Compare the behavior of the two interpolants at xj. Both are
continuous, but spline only also has a derivative that is continuous
and smooth (visually).
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Splines: Building from Ground Up

▶ Generalize (1) using second derivative values at knot points:

y = A(x)yj + B(x)yj+1 + C(x)y ′′j + D(x)y ′′j+1 (2)

where C(x) = 1
6 (A

3(x) − A(x))(xj+1 − xj)2 and
D(x) = 1

6 (B
3(x) − B(x))(xj+1 − xj)2

▶ Note that you only need to know A and B to calculate everything.

▶ Verify that d2y
dx2 = A(x)y′′

j + B(x)y′′

j+1

▶ Since A(xj) = 1 and B(xj+1) = 1− A(xj+1) = 1, the second derivative
agrees with y ′′at end points.

▶ But how to find y′′

j and y′′

j+1 ?
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Splines: Building from Ground Up

▶ Differentiate (2) to obtain expression for dy
dx that involves y

′′

j and y′′

j+1.

▶ Then impose condition that dy
dx calculated using (xj, xj+1) or (xj+1, xj+2)

equal each other at xj+1. We get:

xj − xj−1
6︸ ︷︷ ︸

cj−1

y′′

j−1 +
xj+1 − xj−1

3︸ ︷︷ ︸
dj−1

y′′

j +
xj+1 − xj

6︸ ︷︷ ︸
cj

y′′

j+1 =
yj+1 − yj
xj+1 − xj

−
yj − yj−1
xj − xj−1︸ ︷︷ ︸ .

sj−sj−1

(3)

▶ For interior knot points, j = 2, ...,N− 1, we have an equation like this.
But we have N unknowns (y”j for j = 1, ...,N).

▶ Impose two boundary conditions. Some common choices:
Set y ′1 and y′

N to specified values, or
Set y ′′1 and y ′′N to zero (natural spline) (can help with extrapolation)

▶ Caution: no condition is imposed for y ′ or y′′ to agree with f ′ and f′′ ,
since these are unknown. This can create problems as we will see.
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A Tridiagonal System of Equations

First and last lines are dy/dx at end points:


2c1 −c1
c1 2d1 c2

. . .
cj−1 2dj−1 cj

. . .
cn−2 2dn−2 cn−1

−cn−1 2cn−1


.



y′′1
y′′2
...
y′′j
...

y′′n−1
y′′n


=



s1 − a∗1
s2 − s1

...
sj − sj−1

...
sn−1 − sn−2
sn − a∗n


. (4)
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Runge Example, Second Try

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
True Function

21pt Cubic spline

21pt Polynomial

21pt Shape-preserv. spline

21pt Cheb. polynomial

▶ Notice how well (Schumaker’s) Shape preserving spline does. Cubic
spline also does very well everywhere except the small ripples
between –2 and 2.
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Comparing Interpolation Methods for U(C)



Comparing Boundary Conditions

Figure 2: N = 500 pts
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Comparing Boundary Conditions

Figure 3: N = 100 pts
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Interpolation: What Can Go Wrong

0 1 2 3 4 5 6 7 8 9 10
-6

-5

-4

-3

-2

-1

0

1
10

8

▶ Interpolate U(C) at 100 equally spaced points from 0.05 to 10.
▶ Notice the enormous fluctuations of polynomial interpolation.
▶ Shape-preserving & cubic spline seem to fit well. Or do they?
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Interpolation: Change x-axis scale, Zoom in

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

U
(C

)

10
8

▶ Notice the wild fluctuations in cubic spline at low end!

▶ Shape-preserving also fluctuates but C < 0.05, so that’s fair.
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Interpolation: Zoom into the y-axis

0 0.5 1 1.5 2
-60

-50

-40

-30

-20

-10

0

10

  CRRA with  = 10
  Cubic spline

  Shape-preserving spline

▶ Zoom in more, you see even more fluctuations (because your screen
can now actually plot them!)
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Interpolation: Zoom further

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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▶ And even more fluctuations!
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Taking Stock

▶ So, what’s the point of all of this?

▶ Oftentimes, a beginner will hear about splines or another interpolation
method, will give it a try, and get wild oscillations as you see here.

▶ Sometimes, they won’t even plot the functions, all they will know is
that their algorithm keeps crashing, and they will give up and settle for
linear interpolation or something simple like that.

▶ The truth is, most utility functions are very, very difficult to interpolate
at the low end, because they have a “pole” at zero. That is, they diverge
to (minus) infinity.

▶ Despite this, they can be interpolated extremely accurately but we
need to learn a few important tricks.
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Digression: Standard Spline vs Shape-Preserving

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

y=tanh(x) at x=−5,−4,−3,...

Cubic spline

Shumaker’s spline

y=tanh(x) continuous 

▶ Shape preserving splines can be very useful to ensure concavity or
convexity.
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First Trick: Spacing of Grid Points is Crucial

▶ One heuristic: put more grid points where f has more curvature.

▶ Another one: put more points near the parts of the function that are
more relevant.

▶ In incomp. mkts models, V′′
(ω) is largest for very low ω. So should put

more points there.

▶ Is this true if there are not many individuals near the constraint?
(Answer: Typically, Yes. But why?)

▶ In some DP problems, with max operator on the RHS, the value
function may have a kink or significant curvature somewhere in the
middle of the state space.

Linear interpolation maybe your best choice.
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Expanding Grid

Algorithmus 1 : CREATING A POLYNOMIALLY-EXPANDING GRID

Step 1. First, create an equally-spaced [0,1] grid:
{zj : zj = j−1

N−1 , j = 1, ...,N}.

Step 2. Shift and expand the grid: x = {xj : xj = a+ (b− a)zθj }, where
θ > 1 is the expansion factor.
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Figure 4: Grid Point Locations: 51-Point Expanding Grid From 0 to 250

(a) Low End of Grid

Wealth

0 1 2 3 4 5

θ = 1  θ = 2  θ = 3  θ = 4  

(b) High End of Grid

Wealth

220 225 230 235 240 245 250

θ = 1  θ = 2  θ = 3  θ = 4  

Note: The number of grid points between 0 and 4.99 is 1, 8, 14, and 19 when θ is equal to 1, 2, 3,
and 4, respectively.



Spline w/ Expanding Grid (1000 pts)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

100
  =1.0 (Equally-spaced)

  = 1.05

  = 1.10

▶ When number of grid points is large (1000), even a very small
expansion (exponent of θ = 1.1) can deliver perfect spline
interpolation.
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Spline w/ Expanding Grid (100 pts)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-5

0

5

10
U(C)

  = 1.0

  = 2.0

  = 3.0

▶ But the real power of expanding grid is that we can take a larger θ and
reduce grid points from 1000 to 100 and still get a perfect
interpolation!!
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A Trick to Reduce Curvature of V(w)



A Trick to Reduce the Curvature of V(w)

▶ Samuelson (1969) showed that in a standard portfolio choice problem
with CRRA preferences and a linear budget set, the value function
inherits the curvature of U:

U(c0, c1, ...) =
∞∑
t=1

βt c
1−γ
t

1− γ
⇒ V(ω,A) = ϕ(A)×ω1−γ

▶ The same result holds approximately true in a variety of different
problems.

▶ With incomplete markets, V(w) will typically have even more curvature
than U(c) especially at low wealth levels.

▶ As we have seen so far, this high curvature creates a lot of headache
when you try to interpolate the value function.

▶ Fortunately, there is a way out!
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A Trick to Reduce the Curvature of V(w)

▶ There is an alternative formulation of CRRA preferences:

U(c0, c1, ...) =
( ∞∑

t=1
βtc(1−γ)

t

)1/(1−γ)

▶ This as a special case of Epstein-Zin (1989, E’trica) utility and
represents the same preferences as CRRA utility with RRA = γ.

▶ Now the value function is linear: V(ω,A) = ϕ(A)×ω

▶ Although incomplete markets introduces some curvature, this value
function is much easier to interpolate than the one above.

▶ I once solved a GE model for asset pricing and a risk aversion of 6
using only 30 points in the wealth grid and linear interpolation!
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Which Function Would You Rather Interpolate?

0 1 2 3 4 5
-10

15

-10
10

-10
5

-10
0

-10
-5

-10
-10

0 1 2 3 4 5

  0.19

  0.20

  0.21

Epstein-Zin Value Func.
(right axis)

Standard CRRA Utility
(left axis)

▶ Notice the enormous difference in the range of variation on the left
scale (from −1015 to −10−10!) and right (from 0.19 to 0.21)!
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Final Thoughts

▶ Use the CES (or Epstein-Zin) formulation described here in the wealth
direction whenever it is feasible to do so. You will thank me later.

It will remove most of the headaches associated with the wild
fluctuations discussed above.

▶ In addition, use an expanding grid because with incomplete markets
there will still be a little curvature at the bottom end. I often use θ ≈ 3.

Of course, there will be times when you cannot use the CES trick, so
expanding grid is important.

▶ Choose the lowest point in the c grid of your interpolation carefully.
The lower you go, the more curvature you have to deal with.
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Final Thoughts

▶ For any model you solve, you must eventually re-solve it on a much
finer grid and confirm that your main results are not changing (much if
at all).

▶ This is the only realistic way to check if approximation errors coming
from interpolations are important.

▶ You will be surprised to find that some bad-looking interpolations
actually yield the same results as much more accurate (and more
costly to compute) interpolations.

▶ And vice versa..

▶ Some problems are especially sensitive to any kind of approximation
errors. We will see examples.
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▶ And vice versa..

▶ Some problems are especially sensitive to any kind of approximation
errors. We will see examples.
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