Lecture 3: Integration

Fatih Guvenen University of Minnesota

November 2023

At grid point $(k_i, \boldsymbol{z}_j),$ we solve:

$$\begin{split} V(k_i, z_j) &= \max_{c, k'} \left[u(c) + \beta \mathbb{E}(V(k', z') | z_j) \right] \\ c + k' &= (1 + r)k_i + z_j \\ z' &= \rho z_j + \eta \end{split}$$

At grid point $(k_i, \boldsymbol{z}_j),$ we solve:

$$\begin{split} V(k_i,z_j) &= \max_{c,k'} \left[u(c) + \beta \int V(k',z') f(z'|z_j) dz' \right] \\ c+k' &= (1+r)k_i + z_j \\ z' &= \rho z_j + \eta \end{split}$$

At grid point $(k_i, \boldsymbol{z}_j),$ we solve:

$$\begin{split} V(k_i,z_j) &= \max_{c,k'} \left[u(c) + \beta \int V(k',z') f(z'|z_j) dz' \right] \\ c+k' &= (1+r)k_i + z_j \\ z' &= \rho z_j + \eta \end{split}$$

• How to evaluate the conditional expectation for a given z_j ?

Fatih Guvenen University of Minnesota

Integration in DP problems

1. Discretize the State Space:

 Approximate the continuous process for z with one with a discrete state space (often a Markov process)

- Approximate the continuous process for z with one with a discrete state space (often a Markov process)
- Integration becomes summation.

- Approximate the continuous process for z with one with a discrete state space (often a Markov process)
- Integration becomes summation.
- No need to interpolate, and more importantly *extrapolate*, the value function beyond the z grid

- Approximate the continuous process for z with one with a discrete state space (often a Markov process)
- Integration becomes summation.
- No need to interpolate, and more importantly *extrapolate*, the value function beyond the z grid
- Often faster because it doesn't require interpolation in z direction.

- Approximate the continuous process for z with one with a discrete state space (often a Markov process)
- Integration becomes summation.
- No need to interpolate, and more importantly *extrapolate*, the value function beyond the z grid
- Often faster because it doesn't require interpolation in z direction.
- Problematic if the value function is not smooth in z direction (e.g. if DP has a max operator). More on this later.

▶ OK: Tauchen's (1986) method.

- ▶ OK: Tauchen's (1986) method.
- Better: Tauchen and Hussey's (1991) method.

- ▶ OK: Tauchen's (1986) method.
- Better: Tauchen and Hussey's (1991) method.
- Arguably best: Rouwenhorst (1995) and variants (see Galindev and Lkhagvasuren (2009): "Discretization of Highly-Persistent Correllated AR(1) Shocks" and Kopecky and Suen (2009): "Finite State Markov-chain Approximations to Highly Persistent Processes")

- ▶ OK: Tauchen's (1986) method.
- Better: Tauchen and Hussey's (1991) method.
- Arguably best: Rouwenhorst (1995) and variants (see Galindev and Lkhagvasuren (2009): "Discretization of Highly-Persistent Correllated AR(1) Shocks" and Kopecky and Suen (2009): "Finite State Markov-chain Approximations to Highly Persistent Processes")
- <u>Always</u> simulate and compare your discrete approximation (autocorrelation(n), variance, skewness, histogram, etc) to the true process before using it.
 - You may be surprised at how often you get very different statistics. See next example:

Comparing Different Methods (Galindev and Lkhagvasuren):

ρ	Tauch.			T-H			T-H-F			A-C			Rouwn.		
	$\frac{\log(1-\bar{\rho})}{\log(1-\bar{\rho})}$	$\frac{\hat{\sigma}}{\sigma}$	<u>Ř</u>	$\frac{\log(1-\bar{\rho})}{\log(1-\bar{\rho})}$	$\frac{\hat{\sigma}}{\sigma}$	<u>Ř</u>	$\frac{\log(1-\hat{\rho})}{\log(1-\hat{\rho})}$	$\frac{\hat{\sigma}}{\sigma}$	Ř	P	$\frac{\log(1-\hat{\rho})}{\log(1-\rho)}$	<u>Ř</u>	$\frac{\log(1-\bar{\rho})}{\log(1-\bar{\rho})}$	$\frac{\hat{\sigma}}{\sigma}$	<u>Ř</u>
N=9	105(1-p)		ĸ	105(1-p)		R.	105(1-p)		~	P	10 ₆ (1- <i>p</i>)	ĸ	105(1-p)		ĸ
0.5	0.990	1.016	0.943	1.000	1.000	1.000	1.000	1.000	1.000	0.942	0.976	0.773	1.000	1.000	0.916
0.9	0.984	1.066	0.908	0.944	0.928	0.832	0.998	0.994	0.962	0.910	0.976	0.773	1.000	0.999	0.917
0.99	1.273	1.219	0.834	0.622	0.398	0.623	1.220	0.906	0.721	0.798	0.976	0.773	1.001	0.999	0.919
0.999	NA	NA	NA	0.426	0.130	0.601	NA	NA	NA	0.700	0.974	0.775	0.998	0.993	0.925
0.9999	NA	NA	NA	0.321	0.041	0.598	NA	NA	NA	0.650	0.973	0.776	0.988	0.959	0.961
N=19															
0.5	0.990	0.996	0.938	1.000	1.000	1.000	0.999	0.999	0.999	0.977	0.991	0.875	0.998	1.000	0.963
0.9	0.986	0.999	0.921	0.998	0.997	0.979	1.000	0.999	0.997	0.960	0.988	0.878	1.000	1.000	0.961
0.99	0.983	1.099	0.854	0.777	0.585	0.661	1.026	0.998	0.945	0.899	0.993	0.872	1.000	1.001	0.960
0.999	1.487	1.137	0.857	0.543	0.200	0.608	1.817	0.516	1.197	0.789	0.985	0.884	0.994	0.981	0.973
0.9999	NA	NA	NA	0.408	0.063	0.605	NA	NA	NA	0.718	0.993	0.871	1.002	0.994	0.891
N=49															
0.5	0.989	0.991	0.938	0.998	1.000	1.000	1.002	1.000	1.001	0.992	0.997	0.945	1.000	1.000	0.987
0.9	0.987	0.985	0.923	1.000	1.001	1.000	1.000	1.000	1.001	0.987	0.996	0.946	1.000	1.000	0.986
0.99	0.986	0.991	0.900	0.917	0.822	0.753	1.000	1.002	1.000	0.964	0.996	0.947	0.997	0.994	0.982
0.999	0.987	1.101	0.828	0.669	0.315	0.623	1.213	1.008	0.932	0.895	0.995	0.944	0.999	0.997	0.981
0.9999	1.491	0.756	8.004	0.506	0.102	0.610	NA	NA	NA	0.806	1.002	0.939	1.001	1.006	1.079

Approximated AR(1) process

Table 3: The table compares the results from different methods in approximating an independent AR(1) process. Tauch. is Tauchen's (1986) method, T-H is Tauchen and Hussey's (1991) method, T-H-F is Floden's alternative of Tauchen and Hussey's (1991) method, A-C is Adda and Cooper's (2003) method and Rouwn. is Rouwenhorst's (1995) method. NA denotes the cases where the corresponding method can not generate any data.

Comparing Different Methods: Look Closer

Tauchen (1986)																	
ρ			N=9			N=19					N=49						
	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$		
0.5	0.998	1.057	0.976	1.058	0.984	0.998	1.006	0.974	1.008	0.983	0.998	0.995	0.973	0.997	0.982		
0.9	0.998	1.219	0.948	1.238	1.007	0.999	1.033	0.960	1.045	0.997	0.999	0.993	0.962	1.004	0.998		
0.99	1.008	1.651	0.876	0.227	41.42	1.000	1.329	0.900	1.330	1.416	1.000	1.037	0.942	1.064	0.999		
0.999	NaN	NaN	NaN	NaN	NaN	1.001	1.636	0.842	0.011	1727	1.000	1.374	0.874	1.266	2.060		
0.9999	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		
Rouwenhorst (1995)																	
ρ			N=9			N=19						N=49					
	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$	$\frac{\hat{\rho}}{\rho}$	$\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}$	$\frac{K(x)}{K(y)}$	$\frac{\operatorname{Var}(e)}{\operatorname{Var}(\epsilon)}$	$\frac{K(e)}{K(\epsilon)}$		
0.5	1.000	1.000	0.917	1.000	0.972	1.000	1.000	0.963	1.000	0.988	1.000	1.000	0.986	1.000	0.995		
0.9	1.000	1.000	0.917	1.000	1.627	1.000	1.000	0.963	1.000	1.279	1.000	1.000	0.986	1.000	1.105		
0.99	1.000	1.000	0.917	1.000	9.125	1.000	1.000	0.963	1.000	4.611	1.000	1.000	0.986	1.000	2.354		
0.999	1.000	1.000	0.917	1.000	84.12	1.000	1.000	0.963	1.000	37.94	1.000	1.000	0.986	1.000	14.85		
0.9999	1.000	1.000	0.917	1.000	834.1	1.000	1.000	0.963	1.000	371.2	1.000	1.000	0.986	1.000	139.8		

Source: Galindev and Lkhagvasuren (RED, 2009)

2. Continuous Shocks:

Solve the DP problem for a finite number of z values in current period.

- Solve the DP problem for a finite number of z values in current period.
- **2** But treat the conditional density $f(z'|z_j)$ as that of a continuous variable.

- Solve the DP problem for a finite number of z values in current period.
- **2** But treat the conditional density $f(z'|z_j)$ as that of a continuous variable.
- Use Romberg integration or Gaussian Quadrature-based methods to evaluate the integral.

- Solve the DP problem for a finite number of z values in current period.
- **2** But treat the conditional density $f(z'|z_j)$ as that of a continuous variable.
- Use Romberg integration or Gaussian Quadrature-based methods to evaluate the integral.
- Sometimes slower, sometimes faster than option 1. Typically more accurate but not always worth the additional trouble.
- Very useful when V is not smooth in z direction as noted above.Sometimes only feasible choice when accuracy is critical.

We would like to get an accurate approximation of f(x) over the interval [a, b] by using a finite summation:

$$\int_a^b f(x) dx \approx \sum_{j=1}^N v_j f(x_j)$$

We would like to get an accurate approximation of f(x) over the interval [a, b] by using a finite summation:

$$\int_a^b f(x) dx \approx \sum_{j=1}^N v_j f(x_j)$$

Gaussian quadrature (GQ) provides a way to pick the abscissa points, {x_j}^N_{j=1}, and associated weights, {v_j}^N_{j=1}, to obtain high accuracy with low computational costs.

We would like to get an accurate approximation of f(x) over the interval [a, b] by using a finite summation:

$$\int_a^b f(x) dx \approx \sum_{j=1}^N v_j f(x_j)$$

- Gaussian quadrature (GQ) provides a way to pick the abscissa points, {x_j}^N_{j=1}, and associated weights, {v_j}^N_{j=1}, to obtain high accuracy with low computational costs.
- However, GQ works well only if f(x) is well approximated by a certain class of polynomial of degree N or less.

We would like to get an accurate approximation of f(x) over the interval [a, b] by using a finite summation:

$$\int_a^b f(x) dx \approx \sum_{j=1}^N v_j f(x_j)$$

- Gaussian quadrature (GQ) provides a way to pick the abscissa points, {x_j}^N_{j=1}, and associated weights, {v_j}^N_{j=1}, to obtain high accuracy with low computational costs.
- However, GQ works well only if f(x) is well approximated by a certain class of polynomial of degree N or less.
- ► This can be often fixed. Let $f(x) \equiv W(x) \frac{f(x)}{W(x)} = W(x)g(x)$ where g(x) is well-approximated by polynomials and W(x) is known.

$$\int_a^b W(x)g(x)dx \approx \sum_{j=1}^N w_jg(x_j) \qquad \text{where} \quad w_j = v_j/W(x_j).$$

Fatih Guvenen University of Minnesota

For a given f(x), determine appropriate W(x) and g(x) above. (W(x) = 1 is a possible choice!)

- For a given f(x), determine appropriate W(x) and g(x) above. (W(x) = 1 is a possible choice!)
- Contruct the family of orthonormal polynomials (with respect to W(x)) up to degree N.

- For a given f(x), determine appropriate W(x) and g(x) above. (W(x) = 1 is a possible choice!)
- Contruct the family of orthonormal polynomials (with respect to W(x)) up to degree N.
- \blacksquare Find the zeros of the polynomial of degree N. These are the abscissas, $\{x_j\}_{j=1}^N,$ that you need.

- For a given f(x), determine appropriate W(x) and g(x) above. (W(x) = 1 is a possible choice!)
- Contruct the family of orthonormal polynomials (with respect to W(x)) up to degree N.
- \blacksquare Find the zeros of the polynomial of degree N. These are the abscissas, $\{x_j\}_{j=1}^N,$ that you need.
- If the weights are found by: $w_j = \frac{\langle p_{N-1}|p_{N-1}\rangle}{p_{N-1}(x_j)p'_N(x_j)}$ where $p'_N(x_j)$ is the derivative of the orthogonal polynomial at its root x_j .

- For a given f(x), determine appropriate W(x) and g(x) above.
 (W(x) = 1 is a possible choice!)
- Contruct the family of orthonormal polynomials (with respect to W(x)) up to degree N.
- \blacksquare Find the zeros of the polynomial of degree N. These are the abscissas, $\{x_j\}_{j=1}^N,$ that you need.
- If the weights are found by: $w_j = \frac{\langle p_{N-1}|p_{N-1}\rangle}{p_{N-1}(x_j)p'_N(x_j)}$ where $p'_N(x_j)$ is the derivative of the orthogonal polynomial at its root x_j .
- For an arbitrary W(x) this process is not trivial. Fortunately, for a number of standard weighting functions, we have exact expressions for the polynomial family and good approximations to the roots.

 \blacksquare Gauss-Legendre: W(x) = 1 for -1 < x < 1

• $(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$

 $\ensuremath{{\rm I}}$ Gauss-Legendre: $W(x) = 1 \mbox{ for } -1 < x < 1$

•
$$(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$$

2 Gauss-Chebyshev: $W(x) = (1 - x^2)^{-0.5}$ -1 < x < 1

•
$$T_{j+1} = 2xT_j - T_{j-1}$$

- Gauss-Legendre: W(x) = 1 for -1 < x < 1■ $(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$
- 2 Gauss-Chebyshev: $W(x) = (1-x^2)^{-0.5} \quad -1 < x < 1$ $\bullet \ T_{j+1} = 2xT_j - T_{j-1}$
- 3 Gauss-Hermite: W(x) = e^{-x²} ∞ < x < ∞
 H_{j+1} = 2xH_j 2jH_{j-1}

- Gauss-Legendre: W(x) = 1 for -1 < x < 11 • $(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$
- Gauss-Chebyshev: $W(x) = (1 x^2)^{-0.5} 1 < x < 1$ 2 • $T_{i+1} = 2xT_i - T_{i-1}$
- **3** Gauss-Hermite: $W(x) = e^{-x^2} \infty < x < \infty$

$$H_{j+1} = 2xH_j - 2jH_{j-1}$$

 \blacktriangleright In a DP problem with Gaussian shocks, take W(x) to be the Normal density and $V(x) \equiv g(x)$. If V(x) does not have kinks or poles, we can still apply GQ using Hermite polynomials.

Gauss-Legendre: W(x) = 1 for -1 < x < 1

•
$$(j+1)P_{j+1} = (2j+1)xP_j - jP_{j-1}$$

- 2 Gauss-Chebyshev: $W(x) = (1 x^2)^{-0.5}$ -1 < x < 1• $T_{i+1} = 2xT_i - T_{i-1}$
- **B** Gauss-Hermite: $W(x) = e^{-x^2} \infty < x < \infty$

$$H_{j+1} = 2xH_j - 2jH_{j-1}$$

- In a DP problem with Gaussian shocks, take W(x) to be the Normal density and V(x) ≡ g(x). If V(x) does not have kinks or poles, we can still apply GQ using Hermite polynomials.
- As you will see in coming slides, Legendre and Chebyshev polynomials are bounded between 0 and 1, whereas Hermite polynomials are unbounded. (So be careful when using the latter).

Fatih Guvenen University of Minnesota
Legendre Polynomials

Legendre Polynomials

Figure 1: Legendre Polynomials: W(x) = 1 - 1 < x < 1

Fatih Guvenen University of Minnesota

Chebyshev Polynomials

Figure 2: Chebyshev Polynomials: $W(x) = (1 - x^2)^{-0.5}$ -1 < x < 1

Fatih Guvenen University of Minnesota

Hermite Polynomials

Figure 3: Hermite Polynomials: $W(x) = e^{-x^2} - \infty < x < \infty$

Fatih Guvenen University of Minnesota

Lecture 3: Integration

Major problem: No practical error estimate! You have no idea how good or bad the approximation to the true integral is.

- Major problem: No practical error estimate! You have no idea how good or bad the approximation to the true integral is.
- ► Theoretical error estimate is:

$$E_n(f) = \frac{f^{2n}(\xi)}{(2n)!k_n^2} \qquad a < \xi < b,$$

and for some relevant functions this is explosive (e.g., $f = x^{-1}$ close to zero).

- Major problem: No practical error estimate! You have no idea how good or bad the approximation to the true integral is.
- ► Theoretical error estimate is:

$$E_n(f) = \frac{f^{2n}(\xi)}{(2n)!k_n^2} \qquad a < \xi < b,$$

and for some relevant functions this is explosive (e.g., $f = x^{-1}$ close to zero).

Performance degrades quickly when integrand has kinks and non-polynomial properties.

- Major problem: No practical error estimate! You have no idea how good or bad the approximation to the true integral is.
- ► Theoretical error estimate is:

$$E_n(f) = \frac{f^{2n}(\xi)}{(2n)!k_n^2} \qquad a < \xi < b,$$

and for some relevant functions this is explosive (e.g., $f = x^{-1}$ close to zero).

Performance degrades quickly when integrand has kinks and non-polynomial properties.

► It is not nested.

- Major problem: No practical error estimate! You have no idea how good or bad the approximation to the true integral is.
- ► Theoretical error estimate is:

$$E_n(f) = \frac{f^{2n}(\xi)}{(2n)!k_n^2} \qquad a < \xi < b,$$

and for some relevant functions this is explosive (e.g., $\mathrm{f}=\mathrm{x}^{-1}$ close to zero).

Performance degrades quickly when integrand has kinks and non-polynomial properties.

It is not nested.

Modern integrators fix most of these problems.

1 A quadrature rule is said to be **nested** if for an n_1 -point rule, there is an n_2 -point rule (with $n_2 > n_1$) that reuses the original n_1 abscissas and the associated computations performed for the n_1 -point rule.

- A quadrature rule is said to be **nested** if for an n_1 -point rule, there is an n_2 -point rule (with $n_2 > n_1$) that reuses the original n_1 abscissas and the associated computations performed for the n_1 -point rule.
- 2 A composite quadrature rule subdivides the original interval [a, b] into subintervals and applies a fixed quadrature rule within each subinterval.

- A quadrature rule is said to be **nested** if for an n_1 -point rule, there is an n_2 -point rule (with $n_2 > n_1$) that reuses the original n_1 abscissas and the associated computations performed for the n_1 -point rule.
- 2 A composite quadrature rule subdivides the original interval [a, b] into subintervals and applies a fixed quadrature rule within each subinterval.
- An automatic rule is one that adjusts the number of function evaluations to achieve a certain accuracy for the integral.

- A quadrature rule is said to be **nested** if for an n_1 -point rule, there is an n_2 -point rule (with $n_2 > n_1$) that reuses the original n_1 abscissas and the associated computations performed for the n_1 -point rule.
- 2 A composite quadrature rule subdivides the original interval [a, b] into subintervals and applies a fixed quadrature rule within each subinterval.
- An automatic rule is one that adjusts the number of function evaluations to achieve a certain accuracy for the integral.
- An adaptive rule chooses the points in which the integrand is evaluated depending on the nature of the integrand—so the rule is adapted to the integrand.

Unless you have a very good understanding of the shape of your integrand, <u>GQ should never be your first choice</u>.

- Unless you have a very good understanding of the shape of your integrand, <u>GQ should never be your first choice</u>.
- ► Gauss-Kronrod works in two steps. First constructs an n₁ point GQ integral.
- Then given these n₁ nodes, it inserts one new node in between each pair of existing nodes—in an optimal fashion (for polynomial-like functions)

- Unless you have a very good understanding of the shape of your integrand, <u>GQ should never be your first choice</u>.
- ► Gauss-Kronrod works in two steps. First constructs an n₁ point GQ integral.
- Then given these n₁ nodes, it inserts one new node in between each pair of existing nodes—in an optimal fashion (for polynomial-like functions)
- Key Advantage: comparing the n_1 point integral and the $2n_1 + 1$ point one provides an error estimate.

- Unless you have a very good understanding of the shape of your integrand, <u>GQ should never be your first choice</u>.
- ► Gauss-Kronrod works in two steps. First constructs an n₁ point GQ integral.
- Then given these n₁ nodes, it inserts one new node in between each pair of existing nodes—in an optimal fashion (for polynomial-like functions)
- Key Advantage: comparing the n_1 point integral and the $2n_1 + 1$ point one provides an error estimate.
- Slight loss relative to GQ in polynomial accuracy but typically outperforms in non-polynomial integrands.

Pause: Open-Source Software Libraries

- Important tip: Learn how to use wrappers. You can call very fast Fortran or C libraries from Python, Julia, Matlab, etc.
- ► GNU Scientific library: Written in C but can use wrappers.
- ▶ NetLib (netlib.org): lots of very useful routines in Fortran.
- Quadpack: The automatic integrators we talk about next can be found here: www.netlib.org/quadpack/
- If you are using Julia or another suitable language, you can call both libraries in C and Fortran.

- > You specify the accuracy and they do the rest.
- For general integrands that may include kinks or poles, one of the best choices is QAGS (part of QUADPACK).
- Available for free online. Also part of NAG and IMSL.
- ▶ If integrand has no singularity QAG is as good, and maybe faster.

- ▶ This is a simple and elegant method with some desirable properties.
- It works well even when the function has kinks and other non-polynomial features.
- It is often a good first choice when you're not sure about the shape of the value function and accuracy trumps speed.

- ▶ This is a simple and elegant method with some desirable properties.
- It works well even when the function has kinks and other non-polynomial features.
- It is often a good first choice when you're not sure about the shape of the value function and accuracy trumps speed.
- Basic idea: Use composite trapezoidal rule iteratively, subdividing into finer regions and quickly improving accuracy.

- ▶ This is a simple and elegant method with some desirable properties.
- It works well even when the function has kinks and other non-polynomial features.
- It is often a good first choice when you're not sure about the shape of the value function and accuracy trumps speed.
- Basic idea: Use composite trapezoidal rule iteratively, subdividing into finer regions and quickly improving accuracy.
- ▶ The Euler-McLaurin summation formula for integration error:

$$e_k(f) = c_1 h^2 + c_2 h^4 + \dots + c_N h^{2N} + \mathcal{O}(h^{2N+2}), \tag{1}$$

with $N=2^{k-1}$ subintervals, where h is interval width, and $c_i,$ i=1,2,...,n are coefficients that don't depend on h.

Notice: Error formula only has even powered polynomials. (Which makes trapezoidal rule a good starting point).

- Notice: Error formula only has even powered polynomials. (Which makes trapezoidal rule a good starting point).
- Romberg's idea is to combine estimates with step sizes h₁, h₂, ... h_k in a particular way

$$T_{1}(f) = \frac{(b-a)}{2} (f(a) + f(b))$$
$$T_{2}(f) = \frac{(b-a)}{4} \left(f(a) + 2f(\frac{a+b}{2}) + f(b) \right)$$

- Notice: Error formula only has even powered polynomials. (Which makes trapezoidal rule a good starting point).
- Romberg's idea is to combine estimates with step sizes h₁, h₂, ...h_k in a
 particular way

$$T_1(f) = \frac{(b-a)}{2} (f(a) + f(b))$$

$$T_2(f) = \frac{(b-a)}{4} \left(f(a) + 2f(\frac{a+b}{2}) + f(b) \right).$$

The Euler-McLaurin formula says:

$$T_1(f) = I(f) + c_1 h^2 + \mathcal{O}(h^4)$$
 (2)

$$T_2(f) = I(f) + c_1 \left(\frac{h}{2}\right)^2 + \mathcal{O}(h^4).$$
 (3)

Fatih Guvenen University of Minnesota

Lecture 3: Integration

Using these two equations, we can get:

$$T_{1}(f) - 4T_{2}(f) = -3I(f) + \mathcal{O}(h^{4}) \Rightarrow I(f) = \underbrace{\frac{4T_{2}(f) - T_{1}(f)}{3}}_{R_{2,2}} + \mathcal{O}(h^{4}).$$

Using these two equations, we can get:

$$T_1(f) - 4T_2(f) = -3I(f) + \mathcal{O}(h^4) \Rightarrow I(f) = \underbrace{\frac{4T_2(f) - T_1(f)}{3}}_{R_{2,2}} + \mathcal{O}(h^4).$$

- Error improved to h^4 ! This step is called extrapolation.
- Keep subdividing and extrapolating to quickly improve accuracy quadratically in every step.

Using these two equations, we can get:

$$T_1(f) - 4T_2(f) = -3I(f) + \mathcal{O}(h^4) \Rightarrow I(f) = \underbrace{\frac{4T_2(f) - T_1(f)}{3}}_{R_{2,2}} + \mathcal{O}(h^4).$$

- Error improved to h^4 ! This step is called extrapolation.
- Keep subdividing and extrapolating to quickly improve accuracy quadratically in every step.
- But each subsequent step has double the intervals!

Benchmarking Integrators

Benchmarking Integrators

Five Test Functions

$$f_1 = x^4 \times \text{log}(x + \sqrt{x^2 + 1})$$

$$f_2 = x^{-4} \times \text{log}(x + \sqrt{x^2 + 1})$$

$$f_3 = x^{-5} \times \text{exp}(-x^2)$$

$$f_4 = \begin{cases} \sqrt{x} & \text{ if } x < 5 \\ \sqrt{5} + \sqrt{x-5} & \text{ if } x \geq 5 \end{cases}$$

$$f_5 = \sqrt{x} + \begin{cases} 0.1\sqrt{x} & \text{if } x \in \{[1,2],[3,4]\} \\ -0.1\sqrt{x-1} & \text{if } x \in \{[2,3],[4,5]\} \end{cases}$$

Fatih Guvenen University of Minnesota

Lecture 3: Integration

Benchmarks

	$f_1 (k = 4)$				$f_2(k = -4)$		
Method	Error	Time	f calls	Error	Time	f calls	
Trapezoid	1(-7)	1.4898	4097	4(-6)	15.0195	32769	
Romberg	-5(-8)	0.0107	17	2(-6)	0.4713	1025	
GL (10)	9(-13)	0.0059	10	-4(-1)	0.0064	10	
	-1(-14)	0.0479	100	4(-8)	0.0600	100	
	-1(-14)	0.2035	500	4(-8)	0.2386	500	
GK (qags)	3(-10)	0.0098	21	4(-8)	0.1309	231	
GK (QAG)	-3(-8)	0.0074	15	2(-8)	0.1150	195	
C-Curtis	4(-7)	0.0029	7	1.9	0.0035	7	
	-8(-9)	0.0112	19	-7(-6)	0.0447	55	
	-8(-9)	0.0118	19	3(-7)	0.4430	487	

Benchmarks

$I(y) = \int_{0.1}^{10} (x^{-5} \exp(-x^2)) dx$							
Method	Error	Time	f calls				
Trapezoid	9(-6)	12.7978	32769				
Romberg	5(-8)	0.7604	2049				
Gauss-Legendre	-6(-1)	0.0057	10				
	-4(-3)	0.0179	30				
	-3(-14)	0.2004	500				
GK-qags	-2(-9)	0.1282	273				
GK-qag	-2(-8)	0.1081	225				
Clenshaw-Curtis	3.3(0)	0.0028	7				
	-3(-5)	0.0382	55				
	3(-7)	0.3799	487				

Table 1: Conditional Expectation With Respect to Standard Normal Density

Kinks and Jumps

Function	$\mathrm{Error}{ imes}10^{6}$	Time	f calls
Trapezoid	3(-5)	3.4456	32769
Romberg	-4(-5)	1.7091	16385
Gauss-Legendre	-1(-1)	0.0065	10
	4(-3)	0.0948	100
	1(-3)	0.0891	500
GK-gags	2(-8)	0.3934	1575
GK-qag	3(-9)	0.6339	2535
Clenshaw-Curtis	-1(-1)	0.0014	7
	1(-2)	0.0299	55
	4(-5)	2.5734	4375

Table 2: Integrand f₅: Square-Root Function With Jumps

Another Critical Issue: Extrapolating While Integrating

With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the density of the shock tomorrow conditional on its value today.

Another Critical Issue: Extrapolating While Integrating

- ▶ With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the density of the shock tomorrow conditional on its value today.
- \blacktriangleright Now consider solving the DP problem for z_1 or z_N (lowest or highest grid point). We need to evaluate:

$$\int V(w',z')f(z'|z_N)dz'$$

where $f(z'|z_N)$ is Gaussian with mean ρz_N and variance $\sigma_{\epsilon}^2.$
Another Critical Issue: Extrapolating While Integrating

- ▶ With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the density of the shock tomorrow conditional on its value today.
- \blacktriangleright Now consider solving the DP problem for z_1 or z_N (lowest or highest grid point). We need to evaluate:

$$\int V(w',z')f(z'|z_N)dz'$$

where $f(z'|z_N)$ is Gaussian with mean ρz_N and variance $\sigma_{\epsilon}^2.$

If ρz_N + 2 × σ_ε > z_N you will be extrapolating V(w, z) beyond the upper end of the grid.

Another Critical Issue: Extrapolating While Integrating

- ▶ With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the density of the shock tomorrow conditional on its value today.
- \blacktriangleright Now consider solving the DP problem for z_1 or z_N (lowest or highest grid point). We need to evaluate:

$$\int V(w',z')f(z'|z_N)dz'$$

where $f(z'|z_N)$ is Gaussian with mean ρz_N and variance σ_ϵ^2 .

- If ρz_N + 2 × σ_ε > z_N you will be extrapolating V(w, z) beyond the upper end of the grid.
- If the extrapolation is sufficiently inaccurate (which may very well be!) and the probability weight is non-negligible you'll have a serious problem!

Another Critical Issue: Extrapolating While Integrating

- ▶ With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the density of the shock tomorrow conditional on its value today.
- \blacktriangleright Now consider solving the DP problem for z_1 or z_N (lowest or highest grid point). We need to evaluate:

$$\int V(w',z')f(z'|z_N)dz'$$

where $f(z'|z_N)$ is Gaussian with mean ρz_N and variance $\sigma_{\epsilon}^2.$

- If $\rho z_N + 2 \times \sigma_{\epsilon} > z_N$ you will be extrapolating V(w, z) beyond the upper end of the grid.
- If the extrapolation is sufficiently inaccurate (which may very well be!) and the probability weight is non-negligible you'll have a serious problem!
- Especially problematic if ρ and/or σ_{ϵ} is high.

A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.

- A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.
- Discretizing the z grid almost never works well in these cases!

- A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.
- Discretizing the z grid almost never works well in these cases!
- If you can locate the kink, the best approach is to integrate the two parts separately:

$$\int_{-\infty}^{\overline{z}} V_1(w',z')f(z'|z)dz' + \int_{\overline{z}}^{\infty} V_2(w',z')f(z'|z_N)dz'$$

- A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.
- Discretizing the z grid almost never works well in these cases!
- If you can locate the kink, the best approach is to integrate the two parts separately:

$$\int_{-\infty}^{\overline{z}} V_1(w',z')f(z'|z)dz' + \int_{\overline{z}}^{\infty} V_2(w',z')f(z'|z_N)dz'$$

Notice that the densities are truncated normals. So GQ is a bit tricky to implement.

- A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.
- Discretizing the z grid almost never works well in these cases!
- If you can locate the kink, the best approach is to integrate the two parts separately:

$$\int_{-\infty}^{\overline{z}} V_1(w',z') f(z'|z) dz' + \int_{\overline{z}}^{\infty} V_2(w',z') f(z'|z_N) dz'$$

- Notice that the densities are truncated normals. So GQ is a bit tricky to implement.
- ▶ I use Romberg or QAGS in this case.

- A particularly tricky issue arises when the value function is not smooth, e.g., has a kink in z direction.
- Discretizing the z grid almost never works well in these cases!
- If you can locate the kink, the best approach is to integrate the two parts separately:

$$\int_{-\infty}^{\overline{z}} V_1(w',z') f(z'|z) dz' + \int_{\overline{z}}^{\infty} V_2(w',z') f(z'|z_N) dz'$$

- Notice that the densities are truncated normals. So GQ is a bit tricky to implement.
- ► I use Romberg or QAGS in this case.
- If you cannot locate the kink, you can still use Romberg but is likely to be less accurate and dependable.