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A Prototype Problem

At grid point (ki, zj), we solve:

V(ki, zj) = max
c,k′

[u(c) + βE(V(k′, z′)|zj)]

c + k′ = (1 + r)ki + zj

z′ = ρzj + η

▶ How to evaluate the conditional expectation for a given zj?
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Integration in DP problems



Integration in DP problems: Two Routes

1. Discretize the State Space:

▶ Approximate the continuous process for z with one with a discrete
state space (often a Markov process)

▶ Integration becomes summation.

▶ No need to interpolate, and more importantly extrapolate, the value
function beyond the z grid

▶ Often faster because it doesn’t require interpolation in z direction.

▶ Problematic if the value function is not smooth in z direction (e.g. if DP
has a max operator). More on this later.
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Discretizing Z

▶ OK: Tauchen’s (1986) method.

▶ Better: Tauchen and Hussey’s (1991) method.

▶ Arguably best: Rouwenhorst (1995) and variants (see Galindev and
Lkhagvasuren (2009): “Discretization of Highly-Persistent Correllated
AR(1) Shocks” and Kopecky and Suen (2009): “Finite State Markov-chain
Approximations to Highly Persistent Processes”)

▶ Always simulate and compare your discrete approximation
(autocorrelation(n), variance, skewness, histogram, etc) to the true
process before using it.

You may be surprised at how often you get very different statistics. See
next example:

Fatih Guvenen University of Minnesota Lecture 3: Integration 3 / 29



Discretizing Z

▶ OK: Tauchen’s (1986) method.

▶ Better: Tauchen and Hussey’s (1991) method.

▶ Arguably best: Rouwenhorst (1995) and variants (see Galindev and
Lkhagvasuren (2009): “Discretization of Highly-Persistent Correllated
AR(1) Shocks” and Kopecky and Suen (2009): “Finite State Markov-chain
Approximations to Highly Persistent Processes”)

▶ Always simulate and compare your discrete approximation
(autocorrelation(n), variance, skewness, histogram, etc) to the true
process before using it.

You may be surprised at how often you get very different statistics. See
next example:

Fatih Guvenen University of Minnesota Lecture 3: Integration 3 / 29



Discretizing Z

▶ OK: Tauchen’s (1986) method.

▶ Better: Tauchen and Hussey’s (1991) method.

▶ Arguably best: Rouwenhorst (1995) and variants (see Galindev and
Lkhagvasuren (2009): “Discretization of Highly-Persistent Correllated
AR(1) Shocks” and Kopecky and Suen (2009): “Finite State Markov-chain
Approximations to Highly Persistent Processes”)

▶ Always simulate and compare your discrete approximation
(autocorrelation(n), variance, skewness, histogram, etc) to the true
process before using it.

You may be surprised at how often you get very different statistics. See
next example:

Fatih Guvenen University of Minnesota Lecture 3: Integration 3 / 29



Discretizing Z

▶ OK: Tauchen’s (1986) method.

▶ Better: Tauchen and Hussey’s (1991) method.

▶ Arguably best: Rouwenhorst (1995) and variants (see Galindev and
Lkhagvasuren (2009): “Discretization of Highly-Persistent Correllated
AR(1) Shocks” and Kopecky and Suen (2009): “Finite State Markov-chain
Approximations to Highly Persistent Processes”)

▶ Always simulate and compare your discrete approximation
(autocorrelation(n), variance, skewness, histogram, etc) to the true
process before using it.

You may be surprised at how often you get very different statistics. See
next example:

Fatih Guvenen University of Minnesota Lecture 3: Integration 3 / 29



Comparing Different Methods (Galindev and Lkhagvasuren):
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Comparing Different Methods: Look Closer

Tauchen (1986)
⇢ N=9 N=19 N=49

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

0.5 0.998 1.057 0.976 1.058 0.984 0.998 1.006 0.974 1.008 0.983 0.998 0.995 0.973 0.997 0.982
0.9 0.998 1.219 0.948 1.238 1.007 0.999 1.033 0.960 1.045 0.997 0.999 0.993 0.962 1.004 0.998
0.99 1.008 1.651 0.876 0.227 41.42 1.000 1.329 0.900 1.330 1.416 1.000 1.037 0.942 1.064 0.999
0.999 NaN NaN NaN NaN NaN 1.001 1.636 0.842 0.011 1727 1.000 1.374 0.874 1.266 2.060
0.9999 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Rouwenhorst (1995)
⇢ N=9 N=19 N=49

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

0.5 1.000 1.000 0.917 1.000 0.972 1.000 1.000 0.963 1.000 0.988 1.000 1.000 0.986 1.000 0.995
0.9 1.000 1.000 0.917 1.000 1.627 1.000 1.000 0.963 1.000 1.279 1.000 1.000 0.986 1.000 1.105
0.99 1.000 1.000 0.917 1.000 9.125 1.000 1.000 0.963 1.000 4.611 1.000 1.000 0.986 1.000 2.354
0.999 1.000 1.000 0.917 1.000 84.12 1.000 1.000 0.963 1.000 37.94 1.000 1.000 0.986 1.000 14.85
0.9999 1.000 1.000 0.917 1.000 834.1 1.000 1.000 0.963 1.000 371.2 1.000 1.000 0.986 1.000 139.8

Adda-Copper (2003)
⇢ N=9 N=19 N=49

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

0.5 0.959 0.953 0.773 0.979 0.872 0.984 0.982 0.875 0.993 0.932 0.995 0.995 0.945 0.998 0.971
0.9 0.974 0.953 0.773 1.160 1.090 0.990 0.982 0.875 1.066 1.052 0.997 0.995 0.945 1.022 1.023
0.99 0.985 0.953 0.773 2.390 2.161 0.994 0.982 0.875 1.560 1.832 0.998 0.995 0.945 1.172 1.378
0.999 0.993 0.953 0.773 7.497 6.865 0.997 0.982 0.875 4.169 6.505 0.999 0.995 0.945 2.048 6.721
0.9999 0.998 0.953 0.773 23.76 21.80 0.999 0.982 0.875 13.19 20.62 1.000 0.995 0.945 5.945 24.58

Hussey & Tauchen (1991)
⇢ N=9 N=19 N=49

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.985 0.860 0.833 0.972 0.997 0.999 0.994 0.981 0.999 0.999 1.000 1.000 1.000 1.000 1.000
0.99 0.953 0.159 0.622 0.881 1.049 0.982 0.343 0.660 0.947 1.019 0.995 0.676 0.753 0.988 1.001
0.999 0.948 0.017 0.601 0.866 1.060 0.977 0.040 0.609 0.926 1.030 0.991 0.100 0.621 0.971 1.005
0.9999 0.948 0.002 0.599 0.864 1.061 0.977 0.004 0.604 0.924 1.032 0.991 0.010 0.608 0.969 1.005

Flodén (2008)
⇢ N=9 N=19 N=49

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

⇢̂

⇢

Var(x)
Var(y)

K(x)
K(y)

Var(e)
Var(✏)

K(e)
K(✏)

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.999 0.989 0.962 0.994 1.014 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.99 1.006 0.821 0.718 0.300 8.163 1.001 1.001 0.940 0.886 1.430 1.000 1.000 0.999 1.000 1.000
0.999 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
0.9999 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 1: Moments of a discretized Gaussian AR(1) process
This table shows the performance of the methods of Tauchen (1986), Rouwenhorst (1995), Adda and
Cooper (2003), Hussey and Tauchen (1991), and Flodén (2008) in matching variance and kurtosis of
the levels and of the innovations of a Gaussian AR(1) process. For each method and for each moment
of interest, the performance is evaluated as a ratio of the moment associated with the approximating
Markov chain over the value of the moment of the AR(1) process. A value of one indicates that the
approximating Markov chain perfectly matches the moment. We display the results for different values
of ⇢ and for different cardinalities of the state space, denoted by N . The variance �

2 of the AR(1) is
set to 1 without loss of generality. Notice that mean and skewness of the process are equal to zero in
this application, and all methods match them by construction.

7

Source: Galindev and Lkhagvasuren (RED, 2009)
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Integration in DP problems, cont’d

2. Continuous Shocks:

1 Solve the DP problem for a finite number of z values in current period.

2 But treat the conditional density f(z′|zj) as that of a continuous
variable.

3 Use Romberg integration or Gaussian Quadrature-based methods to
evaluate the integral.

4 Sometimes slower, sometimes faster than option 1. Typically more
accurate but not always worth the additional trouble.

5 Very useful when V is not smooth in z direction as noted above.
Sometimes only feasible choice when accuracy is critical.
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Gaussian Quadrature Based Formulas

▶ We would like to get an accurate approximation of f(x) over the
interval [a, b] by using a finite summation:

ˆ b

a
f(x)dx ≈

N∑
j=1

vjf(xj)

▶ Gaussian quadrature (GQ) provides a way to pick the abscissa points,
{xj}N

j=1, and associated weights, {vj}N
j=1, to obtain high accuracy with

low computational costs.
▶ However, GQ works well only if f(x) is well approximated by a certain
class of polynomial of degree N or less.

▶ This can be often fixed. Let f(x) ≡ W(x) f(x)
W(x) = W(x)g(x) where g(x) is

well-approximated by polynomials and W(x) is known.
ˆ b

a
W(x)g(x)dx ≈

N∑
j=1

wjg(xj) where wj = vj/W(xj).
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Three Steps

1 For a given f(x), determine appropriate W(x) and g(x) above.
(W(x) = 1 is a possible choice!)

2 Contruct the family of orthonormal polynomials (with respect to W(x))
up to degree N.

3 Find the zeros of the polynomial of degree N. These are the abscissas,
{xj}N

j=1, that you need.

4 The weights are found by: wj =
⟨pN−1|pN−1⟩

pN−1(xj)p
′
N(xj)

where p′
N(xj) is the

derivative of the orthogonal polynomial at its root xj.

▶ For an arbitrary W(x) this process is not trivial. Fortunately, for a
number of standard weighting functions, we have exact expressions for
the polynomial family and good approximations to the roots.
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Key Polynomials

1 Gauss-Legendre: W(x) = 1 for −1 < x < 1

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1

2 Gauss-Chebyshev: W(x) = (1− x2)−0.5 − 1 < x < 1

Tj+1 = 2xTj − Tj−1

3 Gauss-Hermite: W(x) = e−x2 −∞ < x < ∞
Hj+1 = 2xHj − 2jHj−1

▶ In a DP problem with Gaussian shocks, take W(x) to be the Normal
density and V(x) ≡ g(x). If V(x) does not have kinks or poles, we can
still apply GQ using Hermite polynomials.

▶ As you will see in coming slides, Legendre and Chebyshev polynomials
are bounded between 0 and 1, whereas Hermite polynomials are
unbounded. (So be careful when using the latter).
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Tj+1 = 2xTj − Tj−1

3 Gauss-Hermite: W(x) = e−x2 −∞ < x < ∞
Hj+1 = 2xHj − 2jHj−1

▶ In a DP problem with Gaussian shocks, take W(x) to be the Normal
density and V(x) ≡ g(x). If V(x) does not have kinks or poles, we can
still apply GQ using Hermite polynomials.

▶ As you will see in coming slides, Legendre and Chebyshev polynomials
are bounded between 0 and 1, whereas Hermite polynomials are
unbounded. (So be careful when using the latter).
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Legendre Polynomials

Figure 1: Legendre Polynomials: W(x) = 1 − 1 < x < 1
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Chebyshev Polynomials

Figure 2: Chebyshev Polynomials: W(x) = (1− x2)−0.5 − 1 < x < 1
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Hermite Polynomials

Figure 3: Hermite Polynomials: W(x) = e−x2

−∞ < x < ∞
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Drawbacks of GQ

▶ Major problem: No practical error estimate! You have no idea how
good or bad the approximation to the true integral is.

▶ Theoretical error estimate is:

En(f) =
f2n(ξ)
(2n)!k2

n
a < ξ < b,

and for some relevant functions this is explosive (e.g., f = x−1 close to
zero).

▶ Performance degrades quickly when integrand has kinks and
non-polynomial properties.

▶ It is not nested.

▶ Modern integrators fix most of these problems.
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Modern Integrators

1 A quadrature rule is said to be nested if for an n1-point rule, there is
an n2-point rule (with n2 > n1) that reuses the original n1 abscissas
and the associated computations performed for the n1-point rule.

2 A composite quadrature rule subdivides the original interval [a, b] into
subintervals and applies a fixed quadrature rule within each
subinterval.

3 An automatic rule is one that adjusts the number of function
evaluations to achieve a certain accuracy for the integral.

4 An adaptive rule chooses the points in which the integrand is
evaluated depending on the nature of the integrand—so the rule is
adapted to the integrand.
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Gauss-Kronrod: Major Improvement

▶ Unless you have a very good understanding of the shape of your
integrand, GQ should never be your first choice.

▶ Gauss-Kronrod works in two steps. First constructs an n1 point GQ
integral.

▶ Then given these n1 nodes, it inserts one new node in between each
pair of existing nodes—in an optimal fashion (for polynomial-like
functions)

▶ Key Advantage: comparing the n1 point integral and the 2n1 + 1 point
one provides an error estimate.

▶ Slight loss relative to GQ in polynomial accuracy but typically
outperforms in non-polynomial integrands.
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Pause: Open-Source Software Libraries

▶ Important tip: Learn how to use wrappers. You can call very fast
Fortran or C libraries from Python, Julia, Matlab, etc.

▶ GNU Scientific library: Written in C but can use wrappers.

▶ NetLib (netlib.org): lots of very useful routines in Fortran.

▶ Quadpack: The automatic integrators we talk about next can be found
here: www.netlib.org/quadpack/

▶ If you are using Julia or another suitable language, you can call both
libraries in C and Fortran.
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Automatic Integrators

▶ You specify the accuracy and they do the rest.

▶ For general integrands that may include kinks or poles, one of the best
choices is QAGS (part of QUADPACK).

▶ Available for free online. Also part of NAG and IMSL.

▶ If integrand has no singularity QAG is as good, and maybe faster.
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Romberg Integration

▶ This is a simple and elegant method with some desirable properties.

▶ It works well even when the function has kinks and other
non-polynomial features.

▶ It is often a good first choice when you’re not sure about the shape of
the value function and accuracy trumps speed.

▶ Basic idea: Use composite trapezoidal rule iteratively, subdividing into
finer regions and quickly improving accuracy.

▶ The Euler-McLaurin summation formula for integration error:

ek(f) = c1h2 + c2h4 + ...+ cNh2N +O(h2N+2), (1)

with N = 2k−1 subintervals, where h is interval width, and ci,
i = 1, 2, ..., n are coefficients that don’t depend on h.
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Romberg Integration

▶ Notice: Error formula only has even powered polynomials. (Which
makes trapezoidal rule a good starting point).

▶ Romberg’s idea is to combine estimates with step sizes h1, h2, ...hk in a
particular way

T1(f) =
(b − a)

2
(f(a) + f(b))

T2(f) =
(b − a)

4

(
f(a) + 2f(

a + b
2

) + f(b)
)
.

▶ The Euler-McLaurin formula says:

T1(f) = I(f) + c1h2 +O(h4) (2)

T2(f) = I(f) + c1
(

h
2

)2

+O(h4). (3)
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Romberg Integration

▶ Using these two equations, we can get:

T1(f)− 4T2(f) = −3I(f) +O(h4) ⇒ I(f) =
4T2(f)− T1(f)

3︸ ︷︷ ︸
R2,2

+O(h4).

▶ Error improved to h4! This step is called extrapolation.

▶ Keep subdividing and extrapolating to quickly improve accuracy
quadratically in every step.

▶ But each subsequent step has double the intervals!
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Benchmarking Integrators



Benchmarking Integrators

Figure 4: Smooth Integrands Without (Left) and With (Right) A Singularity
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Five Test Functions

f1 = x4 × log(x +
√

x2 + 1)

f2 = x−4 × log(x +
√

x2 + 1)

f3 = x−5 × exp(−x2)

f4 =

{√
x if x < 5

√
5 +

√
x − 5 if x ≥ 5

f5 =
√

x +

{
0.1

√
x if x ∈ {[1, 2], [3, 4]}

−0.1
√

x − 1 if x ∈ {[2, 3], [4, 5]}
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Benchmarks

f1 (k = 4) f2(k = −4)
Method Error Time f calls Error Time f calls
Trapezoid 1(−7) 1.4898 4097 4(−6) 15.0195 32769
Romberg −5(−8) 0.0107 17 2(−6) 0.4713 1025
GL (10) 9(−13) 0.0059 10 −4(−1) 0.0064 10

−1(−14) 0.0479 100 4(−8) 0.0600 100
−1(−14) 0.2035 500 4(−8) 0.2386 500

GK (QAGS) 3(−10) 0.0098 21 4(−8) 0.1309 231
GK (QAG) −3(−8) 0.0074 15 2(−8) 0.1150 195
C-Curtis 4(−7) 0.0029 7 1.9 0.0035 7

−8(−9) 0.0112 19 −7(−6) 0.0447 55
−8(−9) 0.0118 19 3(−7) 0.4430 487
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Benchmarks

Table 1: Conditional Expectation With Respect to Standard Normal Density

I(y) =
´ 10
0.1

(
x−5 exp(−x2)

)
dx

Method Error Time f calls
Trapezoid 9(−6) 12.7978 32769
Romberg 5(−8) 0.7604 2049
Gauss-Legendre −6(−1) 0.0057 10

−4(−3) 0.0179 30
−3(−14) 0.2004 500

GK-qags −2(−9) 0.1282 273
GK-qag −2(−8) 0.1081 225
Clenshaw-Curtis 3.3(0) 0.0028 7

−3(−5) 0.0382 55
3(−7) 0.3799 487
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Kinks and Jumps

Figure 5: Integrand With A Kink (Left) and With Jumps (Right)
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Kinks and Jumps

Table 2: Integrand f5: Square-Root Function With Jumps

Function Error×106 Time f calls
Trapezoid 3(−5) 3.4456 32769
Romberg −4(−5) 1.7091 16385
Gauss-Legendre −1(−1) 0.0065 10

4(−3) 0.0948 100
1(−3) 0.0891 500

GK-gags 2(−8) 0.3934 1575
GK-qag 3(−9) 0.6339 2535
Clenshaw-Curtis −1(−1) 0.0014 7

1(−2) 0.0299 55
4(−5) 2.5734 4375
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Another Critical Issue: Extrapolating While Integrating

▶ With an autocorrelated process for z (e.g. AR(1)), W(x) needs to be the
density of the shock tomorrow conditional on its value today.

▶ Now consider solving the DP problem for z1 or zN (lowest or highest
grid point). We need to evaluate:

ˆ
V(w′, z′)f(z′|zN)dz′

where f(z′|zN) is Gaussian with mean ρzN and variance σ2
ϵ .

▶ If ρzN + 2× σϵ > zN you will be extrapolating V(w, z) beyond the upper
end of the grid.

▶ If the extrapolation is sufficiently inaccurate (which may very well be!)
and the probability weight is non-negligible you’ll have a serious
problem!

▶ Especially problematic if ρ and/or σϵ is high.
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problem!

▶ Especially problematic if ρ and/or σϵ is high.
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Integration with Kinks

▶ A particularly tricky issue arises when the value function is not
smooth, e.g., has a kink in z direction.

▶ Discretizing the z grid almost never works well in these cases!
▶ If you can locate the kink, the best approach is to integrate the two
parts separately:

ˆ z

−∞
V1(w′, z′)f(z′|z)dz′ +

ˆ ∞

z
V2(w′, z′)f(z′|zN)dz′

▶ Notice that the densities are truncated normals. So GQ is a bit tricky to
implement.

▶ I use Romberg or QAGS in this case.
▶ If you cannot locate the kink, you can still use Romberg but is likely to
be less accurate and dependable.
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