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High-Quality Free Source Codes: Where to Find?

▶ Lots of high-quality free software for the computational tools we will
learn in this class.

▶ Note: Different implementations can differ substantially! So, get it from
a reliable, broadly used source.

▶ A few good options (there are many more):
Numerical Recipes code (Fortran and C)
GNU Scientific Library (C): http://www.gnu.org/software/gsl/
Netlib repository (Fortran and C): https://www.netlib.org
NLOPT: lots of optimization routines in many languages:
https://nlopt.readthedocs.io/

▶ In general, avoid downloading software from some random
researcher’s website.

You often won’t know who originally wrote the code,
Whether it was modified for the specific use of that researcher.
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Maximizing RHS

V(k, z) = max
c,k′

[
u(c) + β

ˆ
V(k′, z′)f(z′|z)dz′

]
c + k′ = (1 + r)k + z

z′ = ρz + η.

Three Steps:

1 As part of maximizing the RHS, evaluate E(V(k′, z′)|z) repeatedly. Two
components:

1 Interpolation: Maybe required twice.
1 Interpolate in the k′ direction.
2 Also interpolate in the z′ direction, if f(z′|z = zj) is continuous.

2 Integration: Again, if f(z′|z = zj) is continuous, we need to integrate. One
option will be to treat it as discrete (saves time and headaches; not
always feasible).

2 How to perform the maximization in the Bellman objective?
(Constrained optimization)

Fatih Guvenen University of Minnesota Lecture 4: Misc. Numerical Tools 2 / 19



Maximizing RHS

V(k, z) = max
c,k′

[
u(c) + β

ˆ
V(k′, z′)f(z′|z)dz′

]
c + k′ = (1 + r)k + z

z′ = ρz + η.

Three Steps:

1 As part of maximizing the RHS, evaluate E(V(k′, z′)|z) repeatedly. Two
components:

1 Interpolation: Maybe required twice.
1 Interpolate in the k′ direction.
2 Also interpolate in the z′ direction, if f(z′|z = zj) is continuous.

2 Integration: Again, if f(z′|z = zj) is continuous, we need to integrate. One
option will be to treat it as discrete (saves time and headaches; not
always feasible).

2 How to perform the maximization in the Bellman objective?
(Constrained optimization)

Fatih Guvenen University of Minnesota Lecture 4: Misc. Numerical Tools 2 / 19



Root Finding



ROOT FINDING



Introduction

▶ Let f : RN → RN. Solve f(x) = 0.
Depending on f , there may be zero, one, or multiple solutions.

▶ I will start with the root finding problem in one dimension (N = 1).

▶ N = 1 is a special case where we can guarantee that we are bracketing
a zero.

▶ In higher-dimensional problems, no method can (generically)
guarantee that you are bracketing a zero.

▶ In higher dimensions, I often convert zero finding into a minimization
problem. More on this in a moment.
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Bisection, Secant and False Position Methods

Many zero finding methods begin with two points that bracket a zero:
f(a)× f(b) < 0

▶ Bisection:

1 First, evaluate f( a+b
2

). For x = a, b

2 if f( a+b
2

)× f(x) > 0, replace x with a+b
2

. Go back to step 1.

Relatively slow (linear convergence) but converges for sure.

In some challenging problems (will see in later lectures) where other
methods fail, this is the best fallback

▶ Secant and False position methods:

Idea: Treat f(•) as if it is linear near the zero. Given f(a) and f(b), solve
for the zero of the line that connects these two points.
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Secant and False Position Methods

The two methods are very similar but differ in whether they lean towards
speed (secant) or robustness (false position)
(see fig 9.2 in Numerical Recipes 77 book for a comparison)

▶ Secant: take the two most recently evaluated points.

Secant method is very aggressive because it always throws out the oldest
evaluation, which yields superlinear convergence:
limk→∞ |ϵk+1| ≈ K×|ϵ|1.618.

▶ False position: take two most recent points that bracket zero.

Typically slower than Secant because it sometimes keeps an older
evaluation in the interest of bracketing a zero (hard to determine exact
convergence rate).
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What to Use in Practice?

▶ None of the above! These simple methods are often building blocks of
more complex methods that you should use in practice.

But they are useful for understanding more complex methods.

1 If derivatives are (i) painfully expensive to compute or (ii) unreliable
(we will see examples) then use Brent’s method.

2 Else, use the Newton-Raphson method—but only when you know you
are near a zero!

▶ TIP: Convert “zero finding” into a minimization problem: if
f(a)× f(b) < 0 then the squared function f(•)2 will have a local
minimum at the zero of f(•).

▶ Then one can use various methods for minimization (not surprisingly
Brent and Newton’s methods also have versions for optimization).
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Brent’s method

TIP: Brent’s method is your best bet if you really want to avoid using
derivatives.

▶ It combines the speedier version of the Secant method with the
reliability of bisection.

▶ Basically, it takes two points (a, b) that bracket a zero and a third one
in between (e.g., a+b

2 )

▶ It fits a quadratic (instead of the linear function in Secant) to these
three points. This yields faster convergence.

▶ However, it carefully checks that the points always bracket a zero and
the algorithm converges nicely. If not, it reverts back to bisection for a
while.
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Newton-Raphson Method

▶ First-order Taylor approximation:

f(x + δ) = f(x) + δf ′(x) + higher order terms we will ignore...

Setting f(x + δ) = 0 yields δ = − f(x)
f′(x) .

▶ Therefore, begin with x0 and update:

δ = xt+1 − xt ⇒ xt+1 = xt −
f(x)
f ′(x)

until convergence (if it does!)
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Newton-Raphson method
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Newton-Raphson method

▶ Pros:
Quadratic convergence with each step! (That is, the number of significant
digits doubles in every step!)
Extends easily to multi-dimensional problems.

▶ Cons:

computation of derivatives can be very slow if done numerically (as
opposed to having an analytical formula).
Poor global convergence properties.
If there is a local minimum near the zero, updating can overshoot to
infinity.
Use with maximum care!!

▶ What to do? Use a slow but sure method early on (like bisection) but
then once you are “close” to the root switch to Newton-Raphson.
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Poor Global Convergence

Figure 1: Global Divergence, Local Convergence
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Newton’s Fractals

▶ Consider the equation: z3 − 1 = 0. It has three roots: z1 = 1,

z2 = −0.5 + i
√
3/2, z2 = −0.5− i

√
3/2.

▶ The three points line up on a unit circle in the complex plane,
separated by 120 degrees.

▶ Depending on the starting point, Newton’s method can converge to
one of three points or can bounce around with chaotic dynamics.

▶ The whole set feature fractals (near the boundaries).

Fatih Guvenen University of Minnesota Lecture 4: Misc. Numerical Tools 13 / 19



Newton’s Fractals

▶ Starting Newton’s iteration to find the root of z3 − 1 = 0 from an x0 in a
region with a given color, converges to one of the three roots of the
same color.

Figure 2: Original set
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Poor Global Convergence: Another Example

▶ Finding the zeroes of p(x) = (x + 3)(x − 1)(x − 4) using Newton’s
method starting from x0 :

Table 1: Newton’s method’s limit

Initial point x0 limn→∞ xn

2.35287527 –4

2.35284172 –3

2.35283735 –4

2.352836327 –3

2.352836323 –1
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NUMERICAL DERIVATIVE



Numerical Differentiation

▶ TIP: Underestimate numerical differentiation at your own risk!

f ′(x) = limh→0
f(x + h)− f(x)

h
(1)

▶ Take a small h, say 0.0001 and evaluate (1). Looks pretty
straightforward, no? (Hint: No!)

▶ Computing the equilibrium of an economy requires satisfying a set of
conditions (market clearing, optimality of choices, etc.) that can be
expressed as root finding problems.

▶ Once you get near a zero, you often want to use a Newton based
approach→ requires numerical derivatives.

▶ If f(x) is excess demand and x is the price, calculating f(x + h) and f(x)
requires solving the entire model twice!

▶ If you have a complicated model this can be very time consuming.
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Numerical Differentiation

How to choose h? Two issues:

1 Rounding error: If you use double precision variables, not a major
issue.

2 Truncation error: Crucial!!

If f(x) is excess demand, calculated with truncation error ϵf , f ′ will have
error ∼ √

ϵf .

Because ϵf ≥ ϵm (machine precision: typically ~10−15 for DP), the best
lower bound is ∼ √

ϵm.

Actual error will often be much larger, because ϵf ≫ ϵm.

So, to successfully clear mkts, you need to solve the decision rules
precisely. But this is costly (and somewhat pointless) when your x is far
away from x∗.

Notice that in some cases taking a small h may amplify the truncation
error leading to less precision in f ′.

If you choose a termination condition for your program that is too small
(e.g., f ′ < ϵf/2), it may never converge!
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Numerical Differentiation

▶ Two-Sided Derivatives: A better but slower approach:

f ′(x) = limh→0
f(x + h)− f(x − h)

2h

▶ This also requires two function evaluations. So why is it slower?
Because often you need f(x) for other reasons, so you are already going
to compute it.
So two-sided derivatives require 2 additional evaluations compared to 1
for one-sided.

▶ What’s the benefit?

For one-sided derivatives, truncation error is ∼ h. For two sided, it is ∼ h2!

Choose a smaller h than in one-sided case though: assuming you know
the error in evaluating f(x), choose h ∼ ϵ

1/3
f .
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