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Let’s Circle Back to the Beginning

▶ We started with the goal of solving dynamic programs.

▶ One of the simplest problems you will encounter is the income
fluctuation problem:

V (ki, zj) = max
c,k′

{
c1−γ

1− γ
+ βE (V (k′, z′) |zj)

}
(1)

s.t c + k′ = (1 + R)k + z

ln z′ = ρ ln zj + η′, k′ ≥ kmin.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 1 / 20



Choosing Parameters

MODEL PARAMETERS

Parameter Description Value(s) Comment

γ RRA 2 & 10
ρ Persist. of earnings 0.90 & 0.98
σz Uncond. std. dev. of z 0.20
ση Innovation std. dev. 0.20×

√
1− ρ2 Gaussian

β Time discount factor 0.95 & 0.99
R Interest rate Calibrated for k/z = 5

ψ Borr. limit (% of natural limit) 0.6 & 0.1

CHOICES FOR NUMERICAL SOLUTION

N # grid points Experiment from 20 up
k0 Lower bound kmin = −(0.6/R)zmin
kN Upper bound 500
Support of z Discrete grid 11-states Rouwenhorst
θ Expansion exponent 3, 1.3, 1

Optimization method Brent
Interpolation 3-spline or pcws-linear

V0 Initial guess V0(ki, zj) = U((1 + R)ki + zj)

Stop. criteria maxi(
(
Vn−1

i − Vn
i
)
/(1+ |Vn

i |) < 10−7 i indexes grid pts
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Setting Up

▶ Capital grid: Gk ≡ {k0, k1, . . . , kN}

▶ How to choose kN? As discussed, there are two ways:

1 Choose such that g (kN, z) < kN for sure. Need a very wide grid and some
side calculations.

▶ Inefficiently large grid but safer choice to start
▶ Cannot be used when changing parameters during estimation/calibration

2 Choose a large kN but be ready to extrapolate.. with lots of trepidation!

▶ If you extrapolate more than kN − kN−1, your grid is too small.

▶ Reformulate the utility function so that the Bellman objective reads
(recursive CES trick from Lecture 2):

V (k, z) = max
c

[
(1− β) c1−γ + βE

(
V (k′, z′)1−γ

)]1/(1−γ)

.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 3 / 20



Setting Up

▶ Capital grid: Gk ≡ {k0, k1, . . . , kN}

▶ How to choose kN? As discussed, there are two ways:

1 Choose such that g (kN, z) < kN for sure. Need a very wide grid and some
side calculations.

▶ Inefficiently large grid but safer choice to start
▶ Cannot be used when changing parameters during estimation/calibration

2 Choose a large kN but be ready to extrapolate.. with lots of trepidation!

▶ If you extrapolate more than kN − kN−1, your grid is too small.

▶ Reformulate the utility function so that the Bellman objective reads
(recursive CES trick from Lecture 2):

V (k, z) = max
c

[
(1− β) c1−γ + βE

(
V (k′, z′)1−γ

)]1/(1−γ)

.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 3 / 20



Setting Up

▶ Capital grid: Gk ≡ {k0, k1, . . . , kN}

▶ How to choose kN? As discussed, there are two ways:

1 Choose such that g (kN, z) < kN for sure. Need a very wide grid and some
side calculations.

▶ Inefficiently large grid but safer choice to start
▶ Cannot be used when changing parameters during estimation/calibration

2 Choose a large kN but be ready to extrapolate.. with lots of trepidation!

▶ If you extrapolate more than kN − kN−1, your grid is too small.

▶ Reformulate the utility function so that the Bellman objective reads
(recursive CES trick from Lecture 2):

V (k, z) = max
c

[
(1− β) c1−γ + βE

(
V (k′, z′)1−γ

)]1/(1−γ)

.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 3 / 20



Implied Parameters

▶ R is calibrated to get k/z = 5. As β is varied, so will R.
▶ Since natural borrowing limit depends on R, it will have to be adjusted
too.

Table 1: Interest rates and Borrowing Constraint

Interest rate kmin min(c)/mean(z)
ρ β 2 10 2 10 2 & 10

0.9 0.95 0.050 0.030 –6.34 –10.48 0.212
0.99 0.010 0.008 –32.56 –42.00 0.212

0.98 0.95 0.051 0.027 –6.29 –11.76 0.212
0.99 0.009 0.005 –33.91 –61.42 0.212
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Caution: Pay Attention to the Lower End

▶ Check if the imposed kmin, together with zminimply a consumption level
that is “too low”.

▶ Define cmax as the maximum consumption feasible in the worst state:
cmax = (Rkmin + zmin).

▶ So when maximizing Bellman objective, we will be evaluating U(c) at
c < cmax!

▶ For example, above cmax/zmin = 0.21. If we normalize z to 1, and U(c) is
a CRRA with γ = 10, we have U′(cmax) −(0.21)−9/9 ≈ 140, 000.

▶ Suppose we are not careful and search down to c = 0.05. Then
U′(0.05) ∼ 1013. Every numerical computation as well as interpolation,
etc., will be a challenge.

▶ So, before we test any lower c, check if c = cmax is a solution. Very
often it will be.
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Stopping Criterion: Issues to Consider

1 Using a tolerance based on levels is not a good idea, because:
1 The numerical value of utility has no meaning (10−5,10−8, etc) since it’s
an ordinal measure.

2 Because U has wide range of variation, this imposes an “uneven”
stringency condition across different parts of value function.

2 Better to use a percentage-like deviation tolerance.
1 Caution: when V is close to zero, this creates same problem as levels:
values near zero imply huge percentage deviations.

2 Modified criterion:

max
i,j

∣∣Vn(ki, zj)− Vn−1(ki, zj)
∣∣

1 + |Vn(ki, zj)|
< 4× 10−7, (2)

where the +1 in the denominator avoids ratio blowing up.

3 Ideally, set criterion based on decision rule deviation. More on this
later.
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How To Ensure the Accuracy of Solution



Checking for Accuracy

1 Question: Is it sufficient to check the criterion at (i, j) grid points as
written above?

No. We will see this clearly below.

2 Notice that the CES formulation avoids all of these problems at once:
Always positive with small slope.

▶ Preview of Main Lesson: There is no silver bullet. Every test has
significant false positives and negatives (or Type I and Type II errors so
to speak).

▶ That said: there is an essential checklist to go through. Collectively
they will be informative.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 8 / 20



Checking for Accuracy

1 Question: Is it sufficient to check the criterion at (i, j) grid points as
written above?

No. We will see this clearly below.

2 Notice that the CES formulation avoids all of these problems at once:
Always positive with small slope.

▶ Preview of Main Lesson: There is no silver bullet. Every test has
significant false positives and negatives (or Type I and Type II errors so
to speak).

▶ That said: there is an essential checklist to go through. Collectively
they will be informative.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 8 / 20



Checking for Accuracy

1 Question: Is it sufficient to check the criterion at (i, j) grid points as
written above?

No. We will see this clearly below.

2 Notice that the CES formulation avoids all of these problems at once:
Always positive with small slope.

▶ Preview of Main Lesson: There is no silver bullet. Every test has
significant false positives and negatives (or Type I and Type II errors so
to speak).

▶ That said: there is an essential checklist to go through. Collectively
they will be informative.

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 8 / 20



Minimum Checklist

1 Check for convergence: Define a finer grid than the one used to solve
the problem. Check for stopping criteria at all points (using same
interpolation used in the solution).

We will see how critical this will be in a moment.

2 Plot, plot, plot:

1 Start with value function and decision rule at grid points. Some problems
are immediately visible here (nonconcavity, wiggles, crossing into wrong
sign, etc.)

2 Repeat (a) but plot over a much finer grid using the same interpolation
method used in solution.

3 Scaling can obscure many faults. So (a) and (b) may not give any hints
even when there are problems.

1 Change scaling (very much underrated!): plot log(V) vs. k, and V vs. log(k),
and log(V) vs. log(k) (when sign +).

2 Plot the derivative of the functions, which makes problems more visible.
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Finally...

3. Tighten all the screws and solve the problem again:

Increase number of grid points by 3X, 5X, etc.

Tighten tolerance criteria (remember: more in inner loops than outer)

If you used a less accurate method, like linear interpolation, switch to
spline and redo.

▶ Then simulate the more refined solution and check all statistics you
care about.

▶ If they haven’t changed, then you can breathe a sigh of relief.

▶ N.B. In general, getting prices right requires much higher accuracy than
quantities.
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Algorithms: Comparing 4 Methods

Algorithms:

1 Plain-vanilla VFI

2 VFI + Modified Policy Iteration Algorithm (MPIA)

3 VFI + MacQueen-Porteus Bounds (MQP)

4 Endogenous Grid Method (EGM)
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Checking for Accuracy: Example

▶ Use following parameters:
ρ = 0.98, β = 0.99.
Choose R as before. Set kmax = 500 (times average income).

▶ Test four sets of methods for solving this problem:
(i) CRRA specification, spline interpolation;

(ii) CRRA specification, linear interpolation,

(iii) CES specification, spline interpolation; and

(iv) CES specification, linear interpolation.

▶ Take a 20-point grid for k and θ = 3. If convergence fails on this grid→
increase grid points by 20 until convergence.
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Results

Table 2: Convergence Time of VFI Algorithm, Four Methods

Method: RRA
2 10

CES-spline 8.6 15.9

CES-linear 7.8 14.2

CRRA-spline 12.7 55.1∗

CRRA-linear 14.8 20.4

Note: The baseline number of grid points is 20. This looks extremely low and it is. But we will
see how it yields very accurate solutions if the right methods are applied. If convergence is
not obtained for this specification we increase grid points by 20 up to 100. ∗60 point grid was
needed. RRA is coded as integer (not real) for efficiency.
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How did CRRA-linear pull off this feat?

▶ If it sounds too good to be true, it usually is.

▶ But, the convergence criteria was satisfied to 10−7??
Yes, but on the 20 grid points. We didn’t check off grid points!

▶ Suppose, we don’t notice that. Let us plot the decision rule.
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Plot decision rule: Version 1, RRA=10

Figure 1: Savings Decision Generated by Four Solutions of the Same Model
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▶ The first reaction to this figure is often that they all look the same.
Nothing interesting.. or is there?
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Plot: Version 2, zoom in, RRA=2

Figure 2: Savings Decision Generated by Four Solutions of the Same Model
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▶ Let’s look at the easier case, RRA=2. Zoom in by shrinking x-axis range.
Still nothing..
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Plot: Version 3, Zoom in Again, log(K’)

Wealth Today (Kt)
1 2 3 4 5 6 7 8 9 10

10
0

10
1

CRRA-spline

EZ-spline

CRRA-linear

EZ-linear

Wealth Tomorrow, Log Scale (Log Kt+1)

▶ Zoom further in to kt ∈ [1, 10] and plot log of savings.. A little gap
appears at the low end. This gap will increase further at lower k values
near limit.
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Does this deviation matter? Statistics from Simulation

Mean Std. Dev. Max Min

Capital
CES-S 11.26 28.81 100.24 –33.912
CRRA-S 11.18 28.77 99.76 –33.912
CES-L 13.34 28.90 101.86 –33.912
CRRA-L 31.83 28.66 80.78 –33.912

Consumption
CES-S 1.14 0.325 2.16 0.213
CRRA-S 1.13 0.325 2.16 0.213
CES-L 1.15 0.326 2.17 0.213
CRRA-L 1.33 0.326 2.14 0.213

Kt+1 − Kt

CES-S 0.001 0.132 0.611 –0.324
CRRA-S 0.001 0.132 0.613 –0.324
CES-L 0.001 0.130 0.609 –0.318
CRRA-L 0.001 0.075 0.566 –0.233

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 18 / 20



Does this deviation matter? Statistics from Simulation

Mean Std. Dev. Max Min

Capital
CES-S 11.26 28.81 100.24 –33.912
CRRA-S 11.18 28.77 99.76 –33.912
CES-L 13.34 28.90 101.86 –33.912
CRRA-L 31.83 28.66 80.78 –33.912

Consumption
CES-S 1.14 0.325 2.16 0.213
CRRA-S 1.13 0.325 2.16 0.213
CES-L 1.15 0.326 2.17 0.213
CRRA-L 1.33 0.326 2.14 0.213

Kt+1 − Kt

CES-S 0.001 0.132 0.611 –0.324
CRRA-S 0.001 0.132 0.613 –0.324
CES-L 0.001 0.130 0.609 –0.318
CRRA-L 0.001 0.075 0.566 –0.233

Fatih Guvenen University of Minnesota Lecture 5: Putting Algorithms to Work 18 / 20



Does this deviation matter? Statistics from Simulation

Mean Std. Dev. Max Min

Capital
CES-S 11.26 28.81 100.24 –33.912
CRRA-S 11.18 28.77 99.76 –33.912
CES-L 13.34 28.90 101.86 –33.912
CRRA-L 31.83 28.66 80.78 –33.912

Consumption
CES-S 1.14 0.325 2.16 0.213
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CRRA-L 1.33 0.326 2.14 0.213
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That Doesn’t Look Good!

Figure 3: Simulated Paths Generated by Four Solutions Methods, RRA=2

(a) Consumption Path
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(b) Capital Path
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▶ CRRA-Linear is is way off for thousands of periods at a time. Which is why it
generates very different results for some statistics.

▶ CES-L (marked EZ) is a little off in extremes but hard to even see. With 40-point
grid, all stats within 1% of more accurate CES-spline.
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Wrap Up

▶ Verifying the accuracy of the solution typically requires careful
detective work.

Checking the convergence criterion is the first of many steps!

Plotting the value function and decision rules is essential (esp. scaling
up, plotting derivatives, etc.). It is necessary and can reveal very obvious
problems but it is nowhere near sufficient.

▶ Solve the model again on a much finer grid, with tighter tolerance (for
maximization, integration, interpolation, etc) is a must.

▶ Then simulate all key variables and compare the statistics that are
critical for your work.

▶ It is typically much harder to compute prices accurately than
quantities! We will see examples of this in lectures 6 and 7.
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