Lecture 6: Local Optimization

Fatih Guvenen May 27, 2022

Optimization

Overview of Optimization

- Among many uses, you will need it for:
 - solving a dynamic programming problem.
 - root-finding as a minimization problem (discussed earlier)→ solving for GE.
 - estimation or calibration by matching moments.

Overview of Optimization

- Among many uses, you will need it for:
 - solving a dynamic programming problem.
 - root-finding as a minimization problem (discussed earlier)→ solving for GE.
 - estimation or calibration by matching moments.

Two main trade-offs:

- Fast local methods versus slow but more global methods.
- Whether to calculate derivatives (esp. Jacobians/Hessians in multidimensional case!).

Overview of Optimization

- Among many uses, you will need it for:
 - solving a dynamic programming problem.
 - root-finding as a minimization problem (discussed earlier)→ solving for GE.
 - estimation or calibration by matching moments.

Two main trade-offs:

- Fast local methods versus slow but more global methods.
- Whether to calculate derivatives (esp. Jacobians/Hessians in multidimensional case!).
- Some of the ideas for local minimization are very similar to root-finding.
 - In fact, Brent's and Newton's methods have analogs for minimization that work with exactly the same logic.
 - Newton-based methods scale very well to multidimensional case.

LOCAL OPTIMIZATION

Note: You only need **two** points to bracket a zero. But you need **three** to bracket a minimum: f(a), f(c) > f(b).

- ▶ Note: You only need two points to bracket a zero. But you need three to bracket a minimum: f(a), f(c) > f(b).
- So first obtain those three points. Many economic problems naturally suggest the two end points: $(c_{min} = \epsilon, c_{max} = y a_{min})$.

- ▶ Note: You only need two points to bracket a zero. But you need three to bracket a minimum: f(a), f(c) > f(b).
- So first obtain those three points. Many economic problems naturally suggest the two end points: $(c_{min} = \epsilon, c_{max} = y a_{min})$.
- Sometimes, I use NR's mnbrak.f90 routine. Nothing fancy.

- ▶ Note: You only need two points to bracket a zero. But you need three to bracket a minimum: f(a), f(c) > f(b).
- So first obtain those three points. Many economic problems naturally suggest the two end points: $(c_{min} = \epsilon, c_{max} = y a_{min})$.
- Sometimes, I use NR's mnbrak.f90 routine. Nothing fancy.
- For one-dimensional problems my default choice is Brent's method (e.g. NR's brent.f90).
 - It always brackets a minimum and is very fast.
 - There is a version that uses derivatives that's a bit faster (NR's dbrent.f90). It can be faster but not as reliable with objectives that are not super smooth.

- ▶ Note: You only need two points to bracket a zero. But you need three to bracket a minimum: f(a), f(c) > f(b).
- So first obtain those three points. Many economic problems naturally suggest the two end points: $(c_{min} = \epsilon, c_{max} = y a_{min})$.
- Sometimes, I use NR's mnbrak.f90 routine. Nothing fancy.
- For one-dimensional problems <u>my default choice is Brent's method</u> (e.g. NR's brent.f90).
 - It always brackets a minimum and is very fast.
 - There is a version that uses derivatives that's a bit faster (NR's dbrent.f90). It can be faster but not as reliable with objectives that are not super smooth.

Newton's method has very poor global convergence properties. Never use it alone!

- Multi-dimensional optimization can be a very hard problem because:
 - High-dimensional spaces have very unintuitive features. Extrapolating our understanding from 1- or 2-dimensions will get us in trouble.

- High-dimensional spaces have very unintuitive features. Extrapolating our understanding from 1- or 2-dimensions will get us in trouble.
- Further: Unlike 1- or 2-dimensional problems, you cannot plot and visualize the objective

- High-dimensional spaces have very unintuitive features. Extrapolating our understanding from 1- or 2-dimensions will get us in trouble.
- Further: Unlike 1- or 2-dimensional problems, you cannot plot and visualize the objective
- You can at best plot some "slices", which are informative (so is essential to do) but they are never conclusive.

- High-dimensional spaces have very unintuitive features. Extrapolating our understanding from 1- or 2-dimensions will get us in trouble.
- Further: Unlike 1- or 2-dimensional problems, you cannot plot and visualize the objective
- You can at best plot some "slices", which are informative (so is essential to do) but they are never conclusive.
- If there are multiple optima—and very often there are *tons* of them—then you can never guarantee finding the global optimum.

Multi-dimensional optimization can be a very hard problem because:

- High-dimensional spaces have very unintuitive features. Extrapolating our understanding from 1- or 2-dimensions will get us in trouble.
- Further: Unlike 1- or 2-dimensional problems, you cannot plot and visualize the objective
- You can at best plot some "slices", which are informative (so is essential to do) but they are never conclusive.
- If there are multiple optima—and very often there are *tons* of them—then you can never guarantee finding the global optimum.

Proceed with maximum caution.

▶ I will first talk about local optimizers. Then turn to global ones.

- I will first talk about local optimizers. Then turn to global ones.
- Key point: There is no one-size fits all optimizers. They each have their advantages and drawbacks:

- I will first talk about local optimizers. Then turn to global ones.
- Key point: There is no one-size fits all optimizers. They each have their advantages and drawbacks:
 - **1** Quasi-Newton Methods: Very speedy but also greedy: it will either get you to the optima or into a ditch, but will do it quickly!

- ▶ I will first talk about local optimizers. Then turn to global ones.
- Key point: There is no one-size fits all optimizers. They each have their advantages and drawbacks:
 - **1** Quasi-Newton Methods: Very speedy but also greedy: it will either get you to the optima or into a ditch, but will do it quickly!
 - 2 Nelder-Mead's Downhill Simplex: Slow, patient, methodical. Very good global properties even though it's a local optimizer.

- I will first talk about local optimizers. Then turn to global ones.
- Key point: There is no one-size fits all optimizers. They each have their advantages and drawbacks:
 - **1** Quasi-Newton Methods: Very speedy but also greedy: it will either get you to the optima or into a ditch, but will do it quickly!
 - 2 Nelder-Mead's Downhill Simplex: Slow, patient, methodical. Very good global properties even though it's a local optimizer.
 - **3** BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid on the block. Oftentimes very fast and pretty good at finding the optimum. Global properties between the first two.
 - Specifically designed for MSM-like objective functions.

- I will first talk about local optimizers. Then turn to global ones.
- Key point: There is no one-size fits all optimizers. They each have their advantages and drawbacks:
 - Quasi-Newton Methods: Very speedy but also greedy: it will either get you to the optima or into a ditch, but will do it quickly!
 - 2 Nelder-Mead's Downhill Simplex: Slow, patient, methodical. Very good global properties even though it's a local optimizer.
 - BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid on the block. Oftentimes very fast and pretty good at finding the optimum. Global properties between the first two.
 - Specifically designed for MSM-like objective functions.
- All three must be in your toolbox. You will use each depending on the situation. Will have more to say.

Once you are "close enough" to the minimum, quasi-newton methods are hard to beat.

- Once you are "close enough" to the minimum, quasi-newton methods are hard to beat.
- Quasi-Newton methods reduce the N-dimensional minimization into a series of 1-dimensional problems (line search)

- Once you are "close enough" to the minimum, quasi-newton methods are hard to beat.
- Quasi-Newton methods reduce the N-dimensional minimization into a series of 1-dimensional problems (line search)
- Basically starting from a point P, take a direction vector **n** and find λ that minimizes $f(P + \lambda n)$

- Once you are "close enough" to the minimum, quasi-newton methods are hard to beat.
- Quasi-Newton methods reduce the N-dimensional minimization into a series of 1-dimensional problems (line search)
- Basically starting from a point P, take a direction vector **n** and find λ that minimizes $f(P + \lambda n)$
- Once you are at this line minimum, call P+λn, the key step is to decide what direction to move next.

- Once you are "close enough" to the minimum, quasi-newton methods are hard to beat.
- Quasi-Newton methods reduce the N-dimensional minimization into a series of 1-dimensional problems (line search)
- Basically starting from a point P, take a direction vector **n** and find λ that minimizes $f(P + \lambda n)$
- Once you are at this line minimum, call P+λn, the key step is to decide what direction to move next.
- Two main variants: Conjugate Gradient and Variable Metric methods. Differences are relatively minor.
- ▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Powerful method that relies only on function evaluations (no derivatives).

- Powerful method that relies only on function evaluations (no derivatives).
- Works even when the objective function is discontinuous and has kinks!

- Powerful method that relies only on function evaluations (no derivatives).
- Works even when the objective function is discontinuous and has kinks!
- It is slow, but has better global convergence properties than derivative-based algorithms (such as the Broyden-Fletcher-Goldfarb-Shanno method).

- Powerful method that relies only on function evaluations (no derivatives).
- Works even when the objective function is discontinuous and has kinks!
- It is slow, but has better global convergence properties than derivative-based algorithms (such as the Broyden-Fletcher-Goldfarb-Shanno method).
- It must be part of your everyday toolbox.

title style=at=(0.75,1.4)

Figure 1: Evolution of the N-Simplex During the Amoeba Iterations

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

Consider the special case of an objective function of this form:

$$\min \Phi(\mathbf{x}) = \frac{1}{2} \Sigma_{i=1}^m f_i(\mathbf{x})^2$$

where $f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, 2, .., m$.

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

Consider the special case of an objective function of this form:

$$\min \Phi(\mathbf{x}) = \frac{1}{2} \Sigma_{i=1}^m f_i(\mathbf{x})^2$$

where $f_i: \mathbb{R}^n \rightarrow \mathbb{R}, \, i=1,2,..,m.$

Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the BOBYQA algorithm of Powell that does not require derivative information.

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

Consider the special case of an objective function of this form:

$$\min \Phi(\mathbf{x}) = \frac{1}{2} \Sigma_{i=1}^m f_i(\mathbf{x})^2$$

where $f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, 2, .., m$.

- Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the BOBYQA algorithm of Powell that does not require derivative information.
- The key insight is to build quadratic models of each f_i individually, rather than of Φ directly.

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

Consider the special case of an objective function of this form:

$$\min \Phi(\mathbf{x}) = \frac{1}{2} \Sigma_{i=1}^m f_i(\mathbf{x})^2$$

where $f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, 2, .., m$.

- Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the BOBYQA algorithm of Powell that does not require derivative information.
- The key insight is to build quadratic models of each f_i individually, rather than of Φ directly.

The function evaluation cost is the same (order) but it is more accurate, so faster.

Fatih Guvenen

How Do We Evaluate/Compare Optimizers?

First begin by defining a convergence criteria to use to judge when a certain solver has finished its job.

Judging The Performance of Solvers

- First begin by defining a convergence criteria to use to judge when a certain solver has finished its job.
- Let x_0 denote the starting point and τ , ideally small, the tolerance. The value f_L is the best value that can be attained.
 - In practice, f_L is the best value attained among the set of solvers in consideration using at most μ_f function evaluations (i.e., your "budget").

- First begin by defining a convergence criteria to use to judge when a certain solver has finished its job.
- Let x_0 denote the starting point and τ , ideally small, the tolerance. The value f_L is the best value that can be attained.
 - In practice, *f_L* is the best value attained among the set of solvers in consideration using at most *µ_f* function evaluations (i.e., your "budget").
 - Define the stopping rule as :

$$f(x_0) - f(x) \ge (1 - \tau)(f(x_0) - f_L). \tag{1}$$

• We will consider values like $\tau = 10^{-k}$, for $k \in \{1, 3, 5\}$.

Performance profiles are defined in terms of a performance measure $t_{p,s} > 0$ obtained for each problem $p \in P$ and solver $s \in S$.

- Performance profiles are defined in terms of a performance measure $t_{p,s} > 0$ obtained for each problem $p \in P$ and solver $s \in S$.
- Mathematically, the performance ratio is:

$$r_{p,s} = \frac{t_{p,s}}{\min\left\{t_{p,s} : s \in S\right\}}$$

- Performance profiles are defined in terms of a performance measure $t_{p,s} > 0$ obtained for each problem $p \in P$ and solver $s \in S$.
- Mathematically, the performance ratio is:

$$r_{p,s} = \frac{t_{p,s}}{\min\left\{t_{p,s} : s \in S\right\}}$$

t_{p,s} could be based on the amount of computing time or the number of function evaluations required to satisfy the convergence test.

- Performance profiles are defined in terms of a performance measure $t_{p,s} > 0$ obtained for each problem $p \in P$ and solver $s \in S$.
- Mathematically, the performance ratio is:

$$r_{p,s} = \frac{t_{p,s}}{\min\left\{t_{p,s} : s \in S\right\}}$$

- t_{p,s} could be based on the amount of computing time or the number of function evaluations required to satisfy the convergence test.
- Note that the best solver for a particular problem attains the lower bound $r_{p,s} = 1$.
- The convention $r_{p,s} = \infty$ is used when solver s fails to satisfy the convergence test on problem p.

The **performance profile** of a solver $s \in S$ is defined as the fraction of problems where the performance ratio is at most α , that is,

$$\rho_s(\alpha) = \frac{1}{|P|} \text{size} \left\{ p \in P \ : \ r_{p,s} \leq \alpha \right\},$$

where |P| denotes the cardinality of P.

The **performance profile** of a solver $s \in S$ is defined as the fraction of problems where the performance ratio is at most α , that is,

$$\rho_s(\alpha) = \frac{1}{|P|} \text{size} \left\{ p \in P \ : \ r_{p,s} \leq \alpha \right\},$$

where |P| denotes the cardinality of P.

Thus, a performance profile is the probability distribution for the ratio $r_{p,s}$.

The **performance profile** of a solver $s \in S$ is defined as the fraction of problems where the performance ratio is at most α , that is,

$$\rho_s(\alpha) = \frac{1}{|P|} \text{size} \left\{ p \in P \ : \ r_{p,s} \leq \alpha \right\},$$

where |P| denotes the cardinality of P.

- Thus, a performance profile is the probability distribution for the ratio $r_{p,s}$.
- Performance profiles seek to capture how well the solver performs relative to the other solvers in S on the set of problems in P.

The **performance profile** of a solver $s \in S$ is defined as the fraction of problems where the performance ratio is at most α , that is,

$$\rho_s(\alpha) = \frac{1}{|P|} \text{size} \left\{ p \in P \ : \ r_{p,s} \leq \alpha \right\},$$

where |P| denotes the cardinality of P.

- Thus, a performance profile is the probability distribution for the ratio $r_{p,s}$.
- Performance profiles seek to capture how well the solver performs relative to the other solvers in S on the set of problems in P.
- $\triangleright
 ho_s(1)$ is the fraction of problems for which s is the best.
- ln general, $\rho_s(\alpha)$ is the % of problems with $r_{p,s}$ bounded by α . Thus, solvers with high $\rho_s(\alpha)$ are preferable.

Fatih Guvenen

Lecture 6: Local Optimization

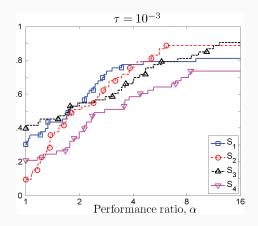


FIG. 2.1. Sample performance profile $\rho_s(\alpha)$ (logarithmic scale) for derivative-free solvers.

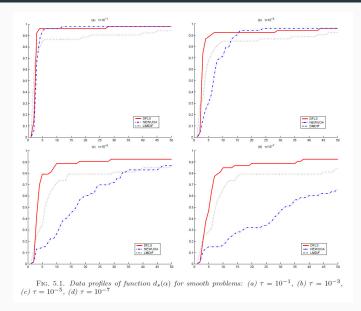
• Oftentimes, we are interested in the percentage of problems that can be solved (for a given τ) with μ_f function evaluations.

- Oftentimes, we are interested in the percentage of problems that can be solved (for a given τ) with μ_f function evaluations.
- We can obtain this information by letting t_{p,s} be the number of function evaluations required to satisfy (1) for a given tolerance τ.
- Moré and Wild (2009) define a data profile as:

$$d_s(\alpha) = \frac{1}{|P|} \mathsf{size} \left\{ p \in P \ : \ \frac{t_{p,s}}{n_p+1} \leq \alpha \right\},$$

where n_p is the number of variables in problem p.

Measuring Actual Performance: DFNLS wins



Lecture 6: Local Optimization