
Lecture 6: Local Optimization

Fatih Guvenen
May 27, 2022

Fatih Guvenen Lecture 6: Local Optimization 1 / 17

Optimization

Overview of Optimization

▶ Among many uses, you will need it for:
solving a dynamic programming problem.
root-finding as a minimization problem (discussed earlier)→ solving for
GE.
estimation or calibration by matching moments.

Two main trade-offs:

▶ Fast local methods versus slow but more global methods.

▶ Whether to calculate derivatives (esp. Jacobians/Hessians in
multidimensional case!).

▶ Some of the ideas for local minimization are very similar to
root-finding.

In fact, Brent’s and Newton’s methods have analogs for minimization that
work with exactly the same logic.
Newton-based methods scale very well to multidimensional case.

Fatih Guvenen Lecture 6: Local Optimization 2 / 17

Overview of Optimization

▶ Among many uses, you will need it for:
solving a dynamic programming problem.
root-finding as a minimization problem (discussed earlier)→ solving for
GE.
estimation or calibration by matching moments.

Two main trade-offs:

▶ Fast local methods versus slow but more global methods.

▶ Whether to calculate derivatives (esp. Jacobians/Hessians in
multidimensional case!).

▶ Some of the ideas for local minimization are very similar to
root-finding.

In fact, Brent’s and Newton’s methods have analogs for minimization that
work with exactly the same logic.
Newton-based methods scale very well to multidimensional case.

Fatih Guvenen Lecture 6: Local Optimization 2 / 17

Overview of Optimization

▶ Among many uses, you will need it for:
solving a dynamic programming problem.
root-finding as a minimization problem (discussed earlier)→ solving for
GE.
estimation or calibration by matching moments.

Two main trade-offs:

▶ Fast local methods versus slow but more global methods.

▶ Whether to calculate derivatives (esp. Jacobians/Hessians in
multidimensional case!).

▶ Some of the ideas for local minimization are very similar to
root-finding.

In fact, Brent’s and Newton’s methods have analogs for minimization that
work with exactly the same logic.
Newton-based methods scale very well to multidimensional case.

Fatih Guvenen Lecture 6: Local Optimization 2 / 17

LOCAL OPTIMIZATION

One-Dimensional Problems

▶ Note: You only need two points to bracket a zero. But you need three
to bracket a minimum: 𝑓(𝑎), 𝑓(𝑐) > 𝑓(𝑏).

▶ So first obtain those three points. Many economic problems naturally
suggest the two end points: (𝑐𝑚𝑖𝑛 = 𝜖, 𝑐𝑚𝑎𝑥 = 𝑦 − 𝑎𝑚𝑖𝑛).

▶ Sometimes, I use NR’s mnbrak.f90 routine. Nothing fancy.

▶ For one-dimensional problems my default choice is Brent’s method
(e.g. NR’s brent.f90).

It always brackets a minimum and is very fast.

There is a version that uses derivatives that’s a bit faster (NR’s
dbrent.f90). It can be faster but not as reliable with objectives that are
not super smooth.

▶ Newton’s method has very poor global convergence properties. Never
use it alone!

Fatih Guvenen Lecture 6: Local Optimization 4 / 17

One-Dimensional Problems

▶ Note: You only need two points to bracket a zero. But you need three
to bracket a minimum: 𝑓(𝑎), 𝑓(𝑐) > 𝑓(𝑏).

▶ So first obtain those three points. Many economic problems naturally
suggest the two end points: (𝑐𝑚𝑖𝑛 = 𝜖, 𝑐𝑚𝑎𝑥 = 𝑦 − 𝑎𝑚𝑖𝑛).

▶ Sometimes, I use NR’s mnbrak.f90 routine. Nothing fancy.

▶ For one-dimensional problems my default choice is Brent’s method
(e.g. NR’s brent.f90).

It always brackets a minimum and is very fast.

There is a version that uses derivatives that’s a bit faster (NR’s
dbrent.f90). It can be faster but not as reliable with objectives that are
not super smooth.

▶ Newton’s method has very poor global convergence properties. Never
use it alone!

Fatih Guvenen Lecture 6: Local Optimization 4 / 17

One-Dimensional Problems

▶ Note: You only need two points to bracket a zero. But you need three
to bracket a minimum: 𝑓(𝑎), 𝑓(𝑐) > 𝑓(𝑏).

▶ So first obtain those three points. Many economic problems naturally
suggest the two end points: (𝑐𝑚𝑖𝑛 = 𝜖, 𝑐𝑚𝑎𝑥 = 𝑦 − 𝑎𝑚𝑖𝑛).

▶ Sometimes, I use NR’s mnbrak.f90 routine. Nothing fancy.

▶ For one-dimensional problems my default choice is Brent’s method
(e.g. NR’s brent.f90).

It always brackets a minimum and is very fast.

There is a version that uses derivatives that’s a bit faster (NR’s
dbrent.f90). It can be faster but not as reliable with objectives that are
not super smooth.

▶ Newton’s method has very poor global convergence properties. Never
use it alone!

Fatih Guvenen Lecture 6: Local Optimization 4 / 17

One-Dimensional Problems

▶ Note: You only need two points to bracket a zero. But you need three
to bracket a minimum: 𝑓(𝑎), 𝑓(𝑐) > 𝑓(𝑏).

▶ So first obtain those three points. Many economic problems naturally
suggest the two end points: (𝑐𝑚𝑖𝑛 = 𝜖, 𝑐𝑚𝑎𝑥 = 𝑦 − 𝑎𝑚𝑖𝑛).

▶ Sometimes, I use NR’s mnbrak.f90 routine. Nothing fancy.

▶ For one-dimensional problems my default choice is Brent’s method
(e.g. NR’s brent.f90).

It always brackets a minimum and is very fast.

There is a version that uses derivatives that’s a bit faster (NR’s
dbrent.f90). It can be faster but not as reliable with objectives that are
not super smooth.

▶ Newton’s method has very poor global convergence properties. Never
use it alone!

Fatih Guvenen Lecture 6: Local Optimization 4 / 17

One-Dimensional Problems

▶ Note: You only need two points to bracket a zero. But you need three
to bracket a minimum: 𝑓(𝑎), 𝑓(𝑐) > 𝑓(𝑏).

▶ So first obtain those three points. Many economic problems naturally
suggest the two end points: (𝑐𝑚𝑖𝑛 = 𝜖, 𝑐𝑚𝑎𝑥 = 𝑦 − 𝑎𝑚𝑖𝑛).

▶ Sometimes, I use NR’s mnbrak.f90 routine. Nothing fancy.

▶ For one-dimensional problems my default choice is Brent’s method
(e.g. NR’s brent.f90).

It always brackets a minimum and is very fast.

There is a version that uses derivatives that’s a bit faster (NR’s
dbrent.f90). It can be faster but not as reliable with objectives that are
not super smooth.

▶ Newton’s method has very poor global convergence properties. Never
use it alone!

Fatih Guvenen Lecture 6: Local Optimization 4 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:

High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:
High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:
High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:
High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:
High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multi-Dimensional Optimization

▶ Multi-dimensional optimization can be a very hard problem because:
High-dimensional spaces have very unintuitive features. Extrapolating
our understanding from 1- or 2-dimensions will get us in trouble.

Further: Unlike 1- or 2-dimensional problems, you cannot plot and
visualize the objective

You can at best plot some “slices”, which are informative (so is essential
to do) but they are never conclusive.

If there are multiple optima—and very often there are *tons* of
them—then you can never guarantee finding the global optimum.

▶ ∴ Proceed with maximum caution.

Fatih Guvenen Lecture 6: Local Optimization 5 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

Multidimensional Optimizers: Three Good Ones

▶ I will first talk about local optimizers. Then turn to global ones.

▶ Key point: There is no one-size fits all optimizers. They each have their
advantages and drawbacks:

1 Quasi-Newton Methods: Very speedy but also greedy: it will either get you
to the optima or into a ditch, but will do it quickly!

2 Nelder-Mead’s Downhill Simplex: Slow, patient, methodical. Very good
global properties even though it’s a local optimizer.

3 BOBYQA + Derivative-Free Nonlinear-Least-Squares (DFNLS): The new kid
on the block. Oftentimes very fast and pretty good at finding the
optimum. Global properties between the first two.

▶ Specifically designed for MSM-like objective functions.

▶ All three must be in your toolbox. You will use each depending on the
situation. Will have more to say.

Fatih Guvenen Lecture 6: Local Optimization 6 / 17

I. Quasi-Newton Methods: Fast and Furious

▶ Once you are “close enough” to the minimum, quasi-newton methods
are hard to beat.

▶ Quasi-Newton methods reduce the N-dimensional minimization into a
series of 1-dimensional problems (line search)

▶ Basically starting from a point P, take a direction vector n and find 𝜆
that minimizes 𝑓(P + 𝜆n)

▶ Once you are at this line minimum, call P+𝜆n, the key step is to decide
what direction to move next.

▶ Two main variants: Conjugate Gradient and Variable Metric methods.
Differences are relatively minor.

▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Fatih Guvenen Lecture 6: Local Optimization 7 / 17

I. Quasi-Newton Methods: Fast and Furious

▶ Once you are “close enough” to the minimum, quasi-newton methods
are hard to beat.

▶ Quasi-Newton methods reduce the N-dimensional minimization into a
series of 1-dimensional problems (line search)

▶ Basically starting from a point P, take a direction vector n and find 𝜆
that minimizes 𝑓(P + 𝜆n)

▶ Once you are at this line minimum, call P+𝜆n, the key step is to decide
what direction to move next.

▶ Two main variants: Conjugate Gradient and Variable Metric methods.
Differences are relatively minor.

▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Fatih Guvenen Lecture 6: Local Optimization 7 / 17

I. Quasi-Newton Methods: Fast and Furious

▶ Once you are “close enough” to the minimum, quasi-newton methods
are hard to beat.

▶ Quasi-Newton methods reduce the N-dimensional minimization into a
series of 1-dimensional problems (line search)

▶ Basically starting from a point P, take a direction vector n and find 𝜆
that minimizes 𝑓(P + 𝜆n)

▶ Once you are at this line minimum, call P+𝜆n, the key step is to decide
what direction to move next.

▶ Two main variants: Conjugate Gradient and Variable Metric methods.
Differences are relatively minor.

▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Fatih Guvenen Lecture 6: Local Optimization 7 / 17

I. Quasi-Newton Methods: Fast and Furious

▶ Once you are “close enough” to the minimum, quasi-newton methods
are hard to beat.

▶ Quasi-Newton methods reduce the N-dimensional minimization into a
series of 1-dimensional problems (line search)

▶ Basically starting from a point P, take a direction vector n and find 𝜆
that minimizes 𝑓(P + 𝜆n)

▶ Once you are at this line minimum, call P+𝜆n, the key step is to decide
what direction to move next.

▶ Two main variants: Conjugate Gradient and Variable Metric methods.
Differences are relatively minor.

▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Fatih Guvenen Lecture 6: Local Optimization 7 / 17

I. Quasi-Newton Methods: Fast and Furious

▶ Once you are “close enough” to the minimum, quasi-newton methods
are hard to beat.

▶ Quasi-Newton methods reduce the N-dimensional minimization into a
series of 1-dimensional problems (line search)

▶ Basically starting from a point P, take a direction vector n and find 𝜆
that minimizes 𝑓(P + 𝜆n)

▶ Once you are at this line minimum, call P+𝜆n, the key step is to decide
what direction to move next.

▶ Two main variants: Conjugate Gradient and Variable Metric methods.
Differences are relatively minor.

▶ I use the BFGS variant of Davidon-Fletcher-Powell algorithm.

Fatih Guvenen Lecture 6: Local Optimization 7 / 17

II. Nelder-Mead Downhill Simplex: Slow and Deliberate

▶ Powerful method that relies only on function evaluations (no
derivatives).

▶ Works even when the objective function is discontinuous and has
kinks!

▶ It is slow, but has better global convergence properties than
derivative-based algorithms (such as the
Broyden-Fletcher-Goldfarb-Shanno method).

▶ It must be part of your everyday toolbox.

Fatih Guvenen Lecture 6: Local Optimization 8 / 17

II. Nelder-Mead Downhill Simplex: Slow and Deliberate

▶ Powerful method that relies only on function evaluations (no
derivatives).

▶ Works even when the objective function is discontinuous and has
kinks!

▶ It is slow, but has better global convergence properties than
derivative-based algorithms (such as the
Broyden-Fletcher-Goldfarb-Shanno method).

▶ It must be part of your everyday toolbox.

Fatih Guvenen Lecture 6: Local Optimization 8 / 17

II. Nelder-Mead Downhill Simplex: Slow and Deliberate

▶ Powerful method that relies only on function evaluations (no
derivatives).

▶ Works even when the objective function is discontinuous and has
kinks!

▶ It is slow, but has better global convergence properties than
derivative-based algorithms (such as the
Broyden-Fletcher-Goldfarb-Shanno method).

▶ It must be part of your everyday toolbox.

Fatih Guvenen Lecture 6: Local Optimization 8 / 17

II. Nelder-Mead Downhill Simplex: Slow and Deliberate

▶ Powerful method that relies only on function evaluations (no
derivatives).

▶ Works even when the objective function is discontinuous and has
kinks!

▶ It is slow, but has better global convergence properties than
derivative-based algorithms (such as the
Broyden-Fletcher-Goldfarb-Shanno method).

▶ It must be part of your everyday toolbox.

Fatih Guvenen Lecture 6: Local Optimization 8 / 17

II. Nelder-Mead Simplex

title style=at=(0.75,1.4)

Figure 1: Evolution of the N-Simplex During the Amoeba Iterations

Fatih Guvenen Lecture 6: Local Optimization 9 / 17

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

▶ Consider the special case of an objective function of this form:

minΦ(x) = 1
2Σ𝑚

𝑖=1𝑓𝑖(x)2

where 𝑓𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1, 2, .., 𝑚.

▶ Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the
BOBYQA algorithm of Powell that does not require derivative
information.

▶ The key insight is to build quadratic models of each 𝑓𝑖 individually,
rather than of Φ directly.

▶ The function evaluation cost is the same (order) but it is more
accurate, so faster.

Fatih Guvenen Lecture 6: Local Optimization 10 / 17

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

▶ Consider the special case of an objective function of this form:

minΦ(x) = 1
2Σ𝑚

𝑖=1𝑓𝑖(x)2

where 𝑓𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1, 2, .., 𝑚.

▶ Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the
BOBYQA algorithm of Powell that does not require derivative
information.

▶ The key insight is to build quadratic models of each 𝑓𝑖 individually,
rather than of Φ directly.

▶ The function evaluation cost is the same (order) but it is more
accurate, so faster.

Fatih Guvenen Lecture 6: Local Optimization 10 / 17

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

▶ Consider the special case of an objective function of this form:

minΦ(x) = 1
2Σ𝑚

𝑖=1𝑓𝑖(x)2

where 𝑓𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1, 2, .., 𝑚.

▶ Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the
BOBYQA algorithm of Powell that does not require derivative
information.

▶ The key insight is to build quadratic models of each 𝑓𝑖 individually,
rather than of Φ directly.

▶ The function evaluation cost is the same (order) but it is more
accurate, so faster.

Fatih Guvenen Lecture 6: Local Optimization 10 / 17

III. DFLS Minimization Algorithm: Sweet Spot

A Derivative-Free Least Squares (DFLS) Minimization Algorithm:

▶ Consider the special case of an objective function of this form:

minΦ(x) = 1
2Σ𝑚

𝑖=1𝑓𝑖(x)2

where 𝑓𝑖 ∶ ℝ𝑛 → ℝ, 𝑖 = 1, 2, .., 𝑚.

▶ Zhang-Conn-Scheinberg (SIAM, 2010) propose an extension of the
BOBYQA algorithm of Powell that does not require derivative
information.

▶ The key insight is to build quadratic models of each 𝑓𝑖 individually,
rather than of Φ directly.

▶ The function evaluation cost is the same (order) but it is more
accurate, so faster.

Fatih Guvenen Lecture 6: Local Optimization 10 / 17

How Do We Evaluate/Compare Optimizers?

Judging The Performance of Solvers

▶ First begin by defining a convergence criteria to use to judge when a
certain solver has finished its job.

▶ Let 𝑥0 denote the starting point and 𝜏 , ideally small, the tolerance. The
value 𝑓𝐿 is the best value that can be attained.

In practice, 𝑓𝐿 is the best value attained among the set of solvers in
consideration using at most 𝜇𝑓 function evaluations (i.e., your “budget”).

▶ Define the stopping rule as :

𝑓(𝑥0) − 𝑓(𝑥) ≥ (1 − 𝜏)(𝑓(𝑥0) − 𝑓𝐿). (1)

▶ We will consider values like 𝜏 = 10−𝑘, for 𝑘 ∈ {1, 3, 5}.

Fatih Guvenen Lecture 6: Local Optimization 12 / 17

Judging The Performance of Solvers

▶ First begin by defining a convergence criteria to use to judge when a
certain solver has finished its job.

▶ Let 𝑥0 denote the starting point and 𝜏 , ideally small, the tolerance. The
value 𝑓𝐿 is the best value that can be attained.

In practice, 𝑓𝐿 is the best value attained among the set of solvers in
consideration using at most 𝜇𝑓 function evaluations (i.e., your “budget”).

▶ Define the stopping rule as :

𝑓(𝑥0) − 𝑓(𝑥) ≥ (1 − 𝜏)(𝑓(𝑥0) − 𝑓𝐿). (1)

▶ We will consider values like 𝜏 = 10−𝑘, for 𝑘 ∈ {1, 3, 5}.

Fatih Guvenen Lecture 6: Local Optimization 12 / 17

Judging The Performance of Solvers

▶ First begin by defining a convergence criteria to use to judge when a
certain solver has finished its job.

▶ Let 𝑥0 denote the starting point and 𝜏 , ideally small, the tolerance. The
value 𝑓𝐿 is the best value that can be attained.

In practice, 𝑓𝐿 is the best value attained among the set of solvers in
consideration using at most 𝜇𝑓 function evaluations (i.e., your “budget”).

▶ Define the stopping rule as :

𝑓(𝑥0) − 𝑓(𝑥) ≥ (1 − 𝜏)(𝑓(𝑥0) − 𝑓𝐿). (1)

▶ We will consider values like 𝜏 = 10−𝑘, for 𝑘 ∈ {1, 3, 5}.

Fatih Guvenen Lecture 6: Local Optimization 12 / 17

Moré and Wild (2009)

▶ Performance profiles are defined in terms of a performance measure
𝑡𝑝,𝑠 > 0 obtained for each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆.

▶ Mathematically, the performance ratio is:

𝑟𝑝,𝑠 = 𝑡𝑝,𝑠
min{𝑡𝑝,𝑠 ∶ 𝑠 ∈ 𝑆}

▶ 𝑡𝑝,𝑠 could be based on the amount of computing time or the number
of function evaluations required to satisfy the convergence test.

▶ Note that the best solver for a particular problem attains the lower
bound 𝑟𝑝,𝑠 = 1.

▶ The convention 𝑟𝑝,𝑠 = ∞ is used when solver 𝑠 fails to satisfy the
convergence test on problem p.

Fatih Guvenen Lecture 6: Local Optimization 13 / 17

Moré and Wild (2009)

▶ Performance profiles are defined in terms of a performance measure
𝑡𝑝,𝑠 > 0 obtained for each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆.

▶ Mathematically, the performance ratio is:

𝑟𝑝,𝑠 = 𝑡𝑝,𝑠
min{𝑡𝑝,𝑠 ∶ 𝑠 ∈ 𝑆}

▶ 𝑡𝑝,𝑠 could be based on the amount of computing time or the number
of function evaluations required to satisfy the convergence test.

▶ Note that the best solver for a particular problem attains the lower
bound 𝑟𝑝,𝑠 = 1.

▶ The convention 𝑟𝑝,𝑠 = ∞ is used when solver 𝑠 fails to satisfy the
convergence test on problem p.

Fatih Guvenen Lecture 6: Local Optimization 13 / 17

Moré and Wild (2009)

▶ Performance profiles are defined in terms of a performance measure
𝑡𝑝,𝑠 > 0 obtained for each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆.

▶ Mathematically, the performance ratio is:

𝑟𝑝,𝑠 = 𝑡𝑝,𝑠
min{𝑡𝑝,𝑠 ∶ 𝑠 ∈ 𝑆}

▶ 𝑡𝑝,𝑠 could be based on the amount of computing time or the number
of function evaluations required to satisfy the convergence test.

▶ Note that the best solver for a particular problem attains the lower
bound 𝑟𝑝,𝑠 = 1.

▶ The convention 𝑟𝑝,𝑠 = ∞ is used when solver 𝑠 fails to satisfy the
convergence test on problem p.

Fatih Guvenen Lecture 6: Local Optimization 13 / 17

Moré and Wild (2009)

▶ Performance profiles are defined in terms of a performance measure
𝑡𝑝,𝑠 > 0 obtained for each problem 𝑝 ∈ 𝑃 and solver 𝑠 ∈ 𝑆.

▶ Mathematically, the performance ratio is:

𝑟𝑝,𝑠 = 𝑡𝑝,𝑠
min{𝑡𝑝,𝑠 ∶ 𝑠 ∈ 𝑆}

▶ 𝑡𝑝,𝑠 could be based on the amount of computing time or the number
of function evaluations required to satisfy the convergence test.

▶ Note that the best solver for a particular problem attains the lower
bound 𝑟𝑝,𝑠 = 1.

▶ The convention 𝑟𝑝,𝑠 = ∞ is used when solver 𝑠 fails to satisfy the
convergence test on problem p.

Fatih Guvenen Lecture 6: Local Optimization 13 / 17

Performance Profile

▶ The performance profile of a solver 𝑠 ∈ 𝑆 is defined as the fraction of
problems where the performance ratio is at most 𝛼, that is,

𝜌𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝛼} ,

where |𝑃 | denotes the cardinality of P.

▶ Thus, a performance profile is the probability distribution for the ratio
𝑟𝑝,𝑠.

▶ Performance profiles seek to capture how well the solver performs
relative to the other solvers in 𝑆 on the set of problems in 𝑃 .

▶ 𝜌𝑠(1) is the fraction of problems for which 𝑠 is the best.

▶ In general, 𝜌𝑠(𝛼) is the % of problems with 𝑟𝑝,𝑠 bounded by 𝛼. Thus,
solvers with high 𝜌𝑠(𝛼) are preferable.

Fatih Guvenen Lecture 6: Local Optimization 14 / 17

Performance Profile

▶ The performance profile of a solver 𝑠 ∈ 𝑆 is defined as the fraction of
problems where the performance ratio is at most 𝛼, that is,

𝜌𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝛼} ,

where |𝑃 | denotes the cardinality of P.

▶ Thus, a performance profile is the probability distribution for the ratio
𝑟𝑝,𝑠.

▶ Performance profiles seek to capture how well the solver performs
relative to the other solvers in 𝑆 on the set of problems in 𝑃 .

▶ 𝜌𝑠(1) is the fraction of problems for which 𝑠 is the best.

▶ In general, 𝜌𝑠(𝛼) is the % of problems with 𝑟𝑝,𝑠 bounded by 𝛼. Thus,
solvers with high 𝜌𝑠(𝛼) are preferable.

Fatih Guvenen Lecture 6: Local Optimization 14 / 17

Performance Profile

▶ The performance profile of a solver 𝑠 ∈ 𝑆 is defined as the fraction of
problems where the performance ratio is at most 𝛼, that is,

𝜌𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝛼} ,

where |𝑃 | denotes the cardinality of P.

▶ Thus, a performance profile is the probability distribution for the ratio
𝑟𝑝,𝑠.

▶ Performance profiles seek to capture how well the solver performs
relative to the other solvers in 𝑆 on the set of problems in 𝑃 .

▶ 𝜌𝑠(1) is the fraction of problems for which 𝑠 is the best.

▶ In general, 𝜌𝑠(𝛼) is the % of problems with 𝑟𝑝,𝑠 bounded by 𝛼. Thus,
solvers with high 𝜌𝑠(𝛼) are preferable.

Fatih Guvenen Lecture 6: Local Optimization 14 / 17

Performance Profile

▶ The performance profile of a solver 𝑠 ∈ 𝑆 is defined as the fraction of
problems where the performance ratio is at most 𝛼, that is,

𝜌𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑟𝑝,𝑠 ≤ 𝛼} ,

where |𝑃 | denotes the cardinality of P.

▶ Thus, a performance profile is the probability distribution for the ratio
𝑟𝑝,𝑠.

▶ Performance profiles seek to capture how well the solver performs
relative to the other solvers in 𝑆 on the set of problems in 𝑃 .

▶ 𝜌𝑠(1) is the fraction of problems for which 𝑠 is the best.

▶ In general, 𝜌𝑠(𝛼) is the % of problems with 𝑟𝑝,𝑠 bounded by 𝛼. Thus,
solvers with high 𝜌𝑠(𝛼) are preferable.

Fatih Guvenen Lecture 6: Local Optimization 14 / 17

Performance Profile

❋�✁✳ ✷✳✂✄ ❙☎♠✆❧✝ ✆✝r✞✟r♠☎♥✠✝ ✆r✟Þ❧✝ ✦s✭✧✮ ✡❧✟❣☎r✐☛☞♠✐✠ ✌✠☎❧✝❡ ✞✟r ❞✝r✐✍☎☛✐✍✝✎✞r✝✝ ✌✟❧✍✝r✌✈

Fatih Guvenen Lecture 6: Local Optimization 15 / 17

Data Profiles

▶ Oftentimes, we are interested in the percentage of problems that can
be solved (for a given 𝜏) with 𝜇𝑓 function evaluations.

▶ We can obtain this information by letting 𝑡𝑝,𝑠 be the number of
function evaluations required to satisfy (1) for a given tolerance 𝜏 .

▶ Moré and Wild (2009) define a data profile as:

𝑑𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑡𝑝,𝑠

𝑛𝑝 + 1 ≤ 𝛼} ,

where 𝑛𝑝 is the number of variables in problem 𝑝.

Fatih Guvenen Lecture 6: Local Optimization 16 / 17

Data Profiles

▶ Oftentimes, we are interested in the percentage of problems that can
be solved (for a given 𝜏) with 𝜇𝑓 function evaluations.

▶ We can obtain this information by letting 𝑡𝑝,𝑠 be the number of
function evaluations required to satisfy (1) for a given tolerance 𝜏 .

▶ Moré and Wild (2009) define a data profile as:

𝑑𝑠(𝛼) = 1
|𝑃 |size{𝑝 ∈ 𝑃 ∶ 𝑡𝑝,𝑠

𝑛𝑝 + 1 ≤ 𝛼} ,

where 𝑛𝑝 is the number of variables in problem 𝑝.

Fatih Guvenen Lecture 6: Local Optimization 16 / 17

Measuring Actual Performance: DFNLS wins

Fatih Guvenen Lecture 6: Local Optimization 17 / 17

	Optimization

