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Bewley-Huggett-Aiyagari Models



Aiyagari (1994)

▶ 3,500 citations since 1994! It is the workhorse model in the incomplete
markets literature.

▶ Individual’s Problem:

E0

{ ∞∑
t=0

βtU (ct)

}
s.t

ct + at+1 = wlt + (1 + r) at

ct ≥ 0, at ≥ −b

lt is a stochastic w/ bdd support

b: natural limit (wlmin/r) or an ad hoc one.

▶ Competitive firm: r = α(K/L)(α−1) and w = (1− α)(K/L)−α.
▶ Solve for K∗,L∗, implies r∗, w∗, and Γ(a): wealth distribution.
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Aiyagari (1994)

▶ Define:

ât ≡ at + ϕ

zt = wlt + (1 + r) ât − rϕ

▶ Asset demand is: ât+1 = A (zt, b,w, r) :

Figure 1: Aiyagari (1994, QJE)
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Concavity of the Consumption Function

▶ Although it may not be clear from this hand drawn figure, the
consumption function is concave under very general conditions.

▶ In fact, when preferences are from HARA class and display “prudence”,
it is strictly concave (Carroll and Kimball (ECMA, 1996)).

▶ HARA class are preferences with “hyperbolic absolute risk aversion” or
“linear absolute risk tolerance”: − U′(c)

U′′(c) = a + bc.

▶ Some key theorems on aggregation depend on HARA preferences so
it’s good to be familiar with them.

▶ CRRA, CARA, and quadratic utility are special cases of HARA. Only the
first two display prudence: U′′′U′

(U′′)2
> 0.
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General equilibrium: r∗ and K∗

Figure 2: Aiyagari (1994, QJE)

▶ Notice that when r = λ long-run asset demand goes to infinity.
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Comments on Aiyagari

▶ What do we learn from Aiyagari?

▶ Two key substantive results:

With incomplete markets, K∗ is higher than under complete mkts (but
typically not by much)

And r∗ is lower (early papers tried to explain the equity premium puzzle
by this).

Figure IIb very useful for other incomplete mkts models too (e.g.,
Krusell-Smith (1998) stochastic-beta, Guvenen (2006) limited participation
& Cagetti-De Nardi (2006) entrepreneurship, or Laitner (2002) bequest,
models.

▶ Methodological: He showed in detail how to solve these models.
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Solving Aiyagari-style Models: Two Approaches

Two ways to solve these models:

1 In time series: by simulating the model

Pros: Conceptually easier and simpler to code

Cons: Often slower and less accurate (sometimes much slower)

2 In state space: using model’s transition equation(s). No simulation

Cons: Could be a bit harder to wrap your head around it.

Pros: Can be much faster and more accurate.
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Solution Algorithm by Simulation (Simple Version)

Two Steps:

1 Solve the consumption-savings problem for a given KD
r level (r and w

implied) and obtain at+1(at, zt; r,w)

We already know how to do this.

2 Simulation:
1 Starting from an initial distribution µ0, simulate a single long time series
of asset values: {at}T

t=1.

2 Discard the first T0 periods (0 ≪ T0 ≪ T) and use {at}T
t=T0+1 , to

calculate the implied aggregate asset supply KS
r = ( 1

T−T0 )
∑T

t=T0+1 at .

3 Check if KD
r = KS

r . If so, we have a steady state equilibrium and K∗ = KD
r .

If KD
r ≶ KS

r , reduce/increase KD
r and go back to step 1. Iterate until

convergence.
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Comments

▶ Notice that we are not simulating a panel of individuals, but a single
time series.

▶ And in step 3, we are taking the time series average (instead of
cross-sectional) to find steady state Ks.

▶ Why are we allowed to do that?
Because the model’s solution is ergodic for the mean of capital.

▶ If, for example, the income process had a fixed effect we couldn’t do
that.

▶ So, steps 2 and 3 would have to be replaced with simulating an N × T
panel and taking an average over N once the model reaches steady
state.

▶ Moreover, we have not checked if the distribution has converged, just
checked if the mean has converged!
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Solution Algorithm by Simulation: Panel Version

(Again) Two Steps:

1 Solve the consumption-savings problem for a given KD
r level (r and w

implied) and obtain at+1(at, zt; r,w)

2 Simulation:
1 Starting from an initial distribution Γ0, simulate an N × T (N,T ≫ 0)

panel of asset values: {ai,t}N,T
i=1,t=1.

2 Use the last cross section,{at}N,T
i=1,t=T , to calculate the implied aggregate

asset supply KS
r = ( 1

N )
∑N

i=1 ai,T.

3 Check if KD
r = KS

r . Also check if µT−1 = µT. If so, we have a steady state
equilibrium and K∗ = KD

r and µ∗ = µT.

1 If not and KD
r ≶ KS

r reduce/increase KD
r and go back to step 1. Iterate until

convergence.

2 If µT−1 ̸= µT , increase simulation length T until the distribution also
converges.
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Notes

▶ T here can be much smaller than the T when we simulate a single
time series.

▶ It is more comparable to the T0in that context—we require the model
to have converged to a steady state, nothing more. Think about 1,000
periods or so minimum though.

▶ It is a good idea to calculate Ks
r for more than one cross section and

compare to ensure they are not moving over time. If the solution has
truly converged to a steady state, the mean should remain (virtually)
constant (say move less than 0.1%)

▶ In the last step, to check if the distribution has converged, you can
compute a histogram with 20 to 50 equal size bins (or more finely at
the top if it matters more for your problem) and calculate the fraction
of individuals in each bin in periods T − 1 and T and make sure the
fractions are (virtually) the same.
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Solution Algorithm in State Space

Two steps:

1 Solve the consumption-savings problem for a given KD
r level (r and w implied)

and obtain at+1(at, zt; r,w)

2 Solve for Steady State Equilibrium:

1 Using decision rules, write the law of motion for the wealth distribution:

µn+1(A,Z;KD
r ) =

∫
QD

r ((a, z), (A,Z))µn(da, dz;KD
r )

Take an initial guess for µn=0 and iterate on this mapping N times.

2 Calculate aggregate asset supply KS
r =

∫
at+1(a, z)dµN(da, dz;KD

r )

3 Check if KD
r = KS

r and µN−1 = µN. If yes, we have a steady state
equilibrium and K∗ = KD

r and µ∗ = µN(a, z,KD
r ).

1 If KD
r ≶ KS

r reduce/increase KD
r and go back to step 1.

2 If µT−1 ̸= µT, increase iteration length N until the distribution also
converges.
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1. How To Simulate? Generating (pseudo-) random numbers

▶ We often need to simulate a large number of individual histories for
thousands of periods.

▶ Generating (pseudo-) random numbers:

Very often we will want to simulate the exact same sequence of random
numbers in repeated simulations.
This is the case when we solve a model via simulation, Aiyagari,
Krusell-Smith, etc.
Also the case when we do any kind of simulation based estimation.
You can do this by using the same “seed” of the RN generator in
subsequent simulations.
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1. Generating (pseudo-) random numbers, cont’d

▶ Not all random number generators are created equal.

▶ Some are very slow. Others are not “random” enough. Some are not
“portable”: they will generate different sequences on different machines (so
you cannot replicate your work elsewhere).

Just to give you an idea:
wikipedia.org/wiki/List_of_random_number_generators
Make sure you know what your RN generator is.
I use ran2.f and ran3.f from NR. Lots of good properties.

▶ Drawing random variables is not costless. Should you redraw every time or
draw once and keep in RAM?

▶ Depends:
#of RN numbers to be generated
speed of RN generator
size of RAM
speed of disk/read write.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 14 / 31



1. Generating (pseudo-) random numbers, cont’d

▶ Not all random number generators are created equal.
▶ Some are very slow. Others are not “random” enough. Some are not

“portable”: they will generate different sequences on different machines (so
you cannot replicate your work elsewhere).

Just to give you an idea:
wikipedia.org/wiki/List_of_random_number_generators

Make sure you know what your RN generator is.
I use ran2.f and ran3.f from NR. Lots of good properties.

▶ Drawing random variables is not costless. Should you redraw every time or
draw once and keep in RAM?

▶ Depends:
#of RN numbers to be generated
speed of RN generator
size of RAM
speed of disk/read write.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 14 / 31



1. Generating (pseudo-) random numbers, cont’d

▶ Not all random number generators are created equal.
▶ Some are very slow. Others are not “random” enough. Some are not

“portable”: they will generate different sequences on different machines (so
you cannot replicate your work elsewhere).

Just to give you an idea:
wikipedia.org/wiki/List_of_random_number_generators
Make sure you know what your RN generator is.
I use ran2.f and ran3.f from NR. Lots of good properties.

▶ Drawing random variables is not costless. Should you redraw every time or
draw once and keep in RAM?

▶ Depends:
#of RN numbers to be generated
speed of RN generator
size of RAM
speed of disk/read write.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 14 / 31



1. Generating (pseudo-) random numbers, cont’d

▶ Not all random number generators are created equal.
▶ Some are very slow. Others are not “random” enough. Some are not

“portable”: they will generate different sequences on different machines (so
you cannot replicate your work elsewhere).

Just to give you an idea:
wikipedia.org/wiki/List_of_random_number_generators
Make sure you know what your RN generator is.
I use ran2.f and ran3.f from NR. Lots of good properties.

▶ Drawing random variables is not costless. Should you redraw every time or
draw once and keep in RAM?

▶ Depends:
#of RN numbers to be generated
speed of RN generator
size of RAM
speed of disk/read write.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 14 / 31



1. Generating (pseudo-) random numbers, cont’d

▶ Not all random number generators are created equal.
▶ Some are very slow. Others are not “random” enough. Some are not

“portable”: they will generate different sequences on different machines (so
you cannot replicate your work elsewhere).

Just to give you an idea:
wikipedia.org/wiki/List_of_random_number_generators
Make sure you know what your RN generator is.
I use ran2.f and ran3.f from NR. Lots of good properties.

▶ Drawing random variables is not costless. Should you redraw every time or
draw once and keep in RAM?

▶ Depends:
#of RN numbers to be generated
speed of RN generator
size of RAM
speed of disk/read write.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 14 / 31



1. Generating (pseudo-) random numbers, cont’d

▶ Do a back-of-the envelope calculation first:

Simulating N individuals for T years, with 1 shock per person/year
E.g., Double precision RN, N = 50, 000 and T = 1, 000,
N × T × 8 bytes: = 4× 108 bytes or 400 Megabytes.
Instead simulate, T = 10, 000: 4 Gigabytes!
This is a huge file. Will take lots of place in RAM and can be very slow to
access.

▶ Alternatives:

Draw RNs period by period, and discard once you do all the calculations
for that period (e.g., calculate savings, consumption, etc. for each
individual).
Simulate all N × T RNs at once. Split T into, e.g., 20, and store them as 20
files.

▶ Bottom line:

You must always “profile” your code. You will often be surprised where
your code spends most of its time. You can then reoptimize to speed up
that part.
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access.

▶ Alternatives:

Draw RNs period by period, and discard once you do all the calculations
for that period (e.g., calculate savings, consumption, etc. for each
individual).
Simulate all N × T RNs at once. Split T into, e.g., 20, and store them as 20
files.

▶ Bottom line:

You must always “profile” your code. You will often be surprised where
your code spends most of its time. You can then reoptimize to speed up
that part.
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1. How to Store Simulated Data

▶ Same back of the envelope calculation but for model variables

Now suppose, you generate individual consumption, labor supply, wealth
for each person/year

Same N and T = 100, 000. If you do double precision reals, each file will
be 5GB, so you gave 15 GB of simulated data in RAM or SSD.

▶ Again you can either save data period by period. Or chop off data into
smaller T subperiods.

▶ Another alternative: Do all calculations and save next period’s state
variables in double precision. Then save current period’s variables in
single precision. Half the file size.
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Comments: Post-Aiyagari Models

▶ Models building on Aiyagari framework face some common challenges.

▶ Even when they match the Gini and top 1% share of wealth it misses
several things:

It takes an extremely long time to get to steady state where such
inequality exists. Several hundreds years or more, or dozens of
generations.

▶ But in the data, many super wealthy are self made: e.g., 54% of Forbes 400
billionaires.

▶ Evidence on bequests inconsistent with transmission of such large wealth
(e.g. Kopczuk’s survey)

Income shocks needed to generate top 1% and Gini is unrealistically large.

Even when top 1% is matched, nobody in simulated data has more than
$20M or so.

Most very wealthy do not work for wages. They are entrepreneurs.
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How Much Inequality in Aiyagari-Style Models?

U.S. Data Gaussian GKOS benchmark
Parametrization: ρ = 0.985, σ2 = 0.0234 Rich process

Gini 0.85 0.58 0.66
Top 0.1% 14.8% 1.1% 2.2%
Frac > $10M 0.4–0.5% ≈ 0 0.02%
Top 1% 35.5% 7.0% 9.2%

Top 10% 75.0% 37.9% 41.6%

Top 20% 87.0% 48.2% 52.8%

BACK
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POWER LAW MODELS



What is a Power Law?

▶ General definition: A power law (PL) is defined as a relationship
between two variables, x and y, where:

y = a × x−α, (1)

for some scaling constant k.

α : is the power law exponent, and is a key parameter.

▶ Eq. (1) implies:
log y = −α× log x,

so a log-log plot of y and x should be a straight line with slope α, which
allows us to see a power law visually (without fitting equation (1)).
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Pareto Distribution

▶ Let w be a random variable whose distribution obeys the relationship:

P(w > x) = a × x−α

where P(w > x) is the counter-CDF of w, for some a and a positive α.
→ w follows a PL or, alternatively, w has a Pareto distribution.

▶ Asymptotic Power Law:
Sometimes the power law holds only above a threshold, x. In that case, w
is said to be asymptotically PL.

▶ PLs are pervasive in nature, including in many distributions social
scientists are interested in.

▶ Crucial property: a PL has finite moments only up to the αth moment.

If α = 1 (called Zipf’s law): mean does not exist!
if α = 1.5, variance does not exist.
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Simple(st) Framework

▶ Proportional random growth model:

st+1 = αtst (2)

where αt is a positive i.i.d random variable.

▶ Which yields:
log st = log s0 +Σt−1

n=1αn

▶ Two results:
1 Assuming αt has a well-behaved distribution so that the central limit
theorem applies, 1

t st converges to a log-normal distribution.
2 The distribution of st spreads without bound, so it has no stationary
distribution (over time).
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Power Law Models: Simple Mechanics

▶ Wi
t :wealth of individual i and Wt : average (per-capita) wealth.

▶ Since wealth grows over time, define: wi
t ≡

Wi
t

Wt
.

▶ Proportional random growth: wi
t+1 = Ai

t × wti , where Ai
t is i.i.d over t

and i, with density f(A).
▶ Define: Gt(wt) := P(wt > x) as the counter-CDF, which evolves:

Gt+1(x) = P(wi
t+1 > x) = P(Ai

tw
i
t > x) > P(wi

t >
x
Ai

t
)

=

∫ ∞

0

Gt(
x
A
)f(A)dA.

▶ If there is a steady state: G(x) =
∫∞
0

G( x
A )f(A)dA.

▶ Guess Pareto distr.: G(x) = c
xα and plugging in yields:

1 =

∫ ∞

0

Aαf(A)dA = E(Aα).
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0

Aαf(A)dA = E(Aα).
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Size Distribution for Firms, α = 1.0495
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US Data, 2011

Linear regression line

y = 16.364− 1.0495× S, R2 = 0.9999
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US Wealth Distribution, α = 1.51
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US Data, Survey of Consumer Finances

Regression Line: 21.67 - 1.51 x log(wealth)
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US Cities Size Distribution, α = 1.0315
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US Data, 2010

ln(Rank) = 18.147− 1.0315×ln(Pop.), R2 = 0.980
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Annual Income Growth Distribution, US Males
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Measuring the Tail

▶ Researchers do not always have access to micro data to plot the log
density vs log x graph and see linear relationship.

▶ A Pareto distribution can be verified and tail index estimated in a
simpler way.

▶ First: If P(y > x) = k × x−α, the conditional mean of y above any y is
E(y|y > y) = y × α

1−α .

Two Implications:

1
E(y|y>y)

y = α
1−α . LHS can be measured by IRS tabulations.

2
E(y|y>y1)
E(y|y>y2

= y1

y2
. Ratio of top income (or wealth) share must be constant.
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Jones and Kim (2018, JPE) extending Saez (2001)
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Jones and Kim (2018, JPE), very top end
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Can Aiyagari-style Models Generate a Pareto Tail?

▶ In the Aiyagari-style models where the only risk is from idiosyncratic
labor income shocks, the wealth distribution inherits the tail of the
income distribution.

▶ So, unless income shocks are modeled to have a Pareto tail, the wealth
distribution will not either.

▶ Because the income distribution has a much thinner tail, the wealth
distribution will also have the same.

▶ See Hubmer, Krusell, Smith (NBER MA, 2020), Carroll, Slajek and Tokuo
(2014, AER P&P) for quantitative demonstration of lack of Pareto tail.

▶ Bottom line: If top end inequality matters in your model (it often
does), the Aiyagari model will fail to provide a good framework for your
analysis.

▶ Power Law models generate a thick Pareto tail in wealth much more
easily.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 31 / 31



Can Aiyagari-style Models Generate a Pareto Tail?

▶ In the Aiyagari-style models where the only risk is from idiosyncratic
labor income shocks, the wealth distribution inherits the tail of the
income distribution.

▶ So, unless income shocks are modeled to have a Pareto tail, the wealth
distribution will not either.

▶ Because the income distribution has a much thinner tail, the wealth
distribution will also have the same.

▶ See Hubmer, Krusell, Smith (NBER MA, 2020), Carroll, Slajek and Tokuo
(2014, AER P&P) for quantitative demonstration of lack of Pareto tail.

▶ Bottom line: If top end inequality matters in your model (it often
does), the Aiyagari model will fail to provide a good framework for your
analysis.

▶ Power Law models generate a thick Pareto tail in wealth much more
easily.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 31 / 31



Can Aiyagari-style Models Generate a Pareto Tail?

▶ In the Aiyagari-style models where the only risk is from idiosyncratic
labor income shocks, the wealth distribution inherits the tail of the
income distribution.

▶ So, unless income shocks are modeled to have a Pareto tail, the wealth
distribution will not either.

▶ Because the income distribution has a much thinner tail, the wealth
distribution will also have the same.

▶ See Hubmer, Krusell, Smith (NBER MA, 2020), Carroll, Slajek and Tokuo
(2014, AER P&P) for quantitative demonstration of lack of Pareto tail.

▶ Bottom line: If top end inequality matters in your model (it often
does), the Aiyagari model will fail to provide a good framework for your
analysis.

▶ Power Law models generate a thick Pareto tail in wealth much more
easily.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 31 / 31



Can Aiyagari-style Models Generate a Pareto Tail?

▶ In the Aiyagari-style models where the only risk is from idiosyncratic
labor income shocks, the wealth distribution inherits the tail of the
income distribution.

▶ So, unless income shocks are modeled to have a Pareto tail, the wealth
distribution will not either.

▶ Because the income distribution has a much thinner tail, the wealth
distribution will also have the same.

▶ See Hubmer, Krusell, Smith (NBER MA, 2020), Carroll, Slajek and Tokuo
(2014, AER P&P) for quantitative demonstration of lack of Pareto tail.

▶ Bottom line: If top end inequality matters in your model (it often
does), the Aiyagari model will fail to provide a good framework for your
analysis.

▶ Power Law models generate a thick Pareto tail in wealth much more
easily.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 31 / 31



Can Aiyagari-style Models Generate a Pareto Tail?

▶ In the Aiyagari-style models where the only risk is from idiosyncratic
labor income shocks, the wealth distribution inherits the tail of the
income distribution.

▶ So, unless income shocks are modeled to have a Pareto tail, the wealth
distribution will not either.

▶ Because the income distribution has a much thinner tail, the wealth
distribution will also have the same.

▶ See Hubmer, Krusell, Smith (NBER MA, 2020), Carroll, Slajek and Tokuo
(2014, AER P&P) for quantitative demonstration of lack of Pareto tail.

▶ Bottom line: If top end inequality matters in your model (it often
does), the Aiyagari model will fail to provide a good framework for your
analysis.

▶ Power Law models generate a thick Pareto tail in wealth much more
easily.

Fatih Guvenen University of Minnesota Lecture 8: GE with Heterogeneity 31 / 31


