Lecture 9: GE with Heterogeneity and Aggregate Shocks

Fatih Guvenen U of Minnesota

December 2023

- In incomplete markets models <u>without</u> aggregate shocks (e.g., Huggett (1993), Aiyagari (1994)), the long-run behavior is characterized by a steady state with constant prices and a stationary distribution of wealth.
 - In Aiyagari (1994), this means a constant r and w, both pinned down by a constant K.

- In incomplete markets models <u>without</u> aggregate shocks (e.g., Huggett (1993), Aiyagari (1994)), the long-run behavior is characterized by a steady state with constant prices and a stationary distribution of wealth.
 - In Aiyagari (1994), this means a constant r and w, both pinned down by a constant K.
- This made solving for the steady state GE very easy—all we need to do was to find a fixed number K that clears the capital market.

- In incomplete markets models <u>without</u> aggregate shocks (e.g., Huggett (1993), Aiyagari (1994)), the long-run behavior is characterized by a steady state with constant prices and a stationary distribution of wealth.
 - In Aiyagari (1994), this means a constant r and w, both pinned down by a constant K.
- This made solving for the steady state GE very easy—all we need to do was to find a fixed number K that clears the capital market.
- Q: What happens when we introduce an aggregate shock (e.g., a TFP shock) to an Aiyagari (1994)-style model?

- In incomplete markets models <u>without</u> aggregate shocks (e.g., Huggett (1993), Aiyagari (1994)), the long-run behavior is characterized by a steady state with constant prices and a stationary distribution of wealth.
 - In Aiyagari (1994), this means a constant r and w, both pinned down by a constant K.
- This made solving for the steady state GE very easy—all we need to do was to find a fixed number K that clears the capital market.
- Q: What happens when we introduce an aggregate shock (e.g., a TFP shock) to an Aiyagari (1994)-style model?
 - Now, equilibrium prices are no longer constant.
 - This is because the wealth distribution (call μ) will vary with the aggregate shock (call Z), so market clearing prices will also vary.
 - In other words, equilibrium pricing functions depend on Z **and** the entire wealth distribution!

In other words:

In other words:

Since agents need to forecast future prices, they need to know:

- how future prices depend on Z and μ , which is an ∞ -dimensional object.
- and how μ evolves: $\mu_{t+1} = \Gamma(\mu_t, Z_t)$
- Without any further discipline, this is an impossible task!

In other words:

Since agents need to forecast future prices, they need to know:

- how future prices depend on Z and μ , which is an ∞ -dimensional object.
- and how μ evolves: $\mu_{t+1} = \Gamma(\mu_t, Z_t)$
- Without any further discipline, this is an impossible task!
- So, many thought this was an intractable problem, which blocked the way to business cycle analysis with incomplete markets.

Solving for GE with aggregate shocks is a challenging problem for three reasons:

We need to solve for prices as a function of a potentially very large state space (\mathbf{Z}, μ)

- We need to solve for prices as a function of a potentially very large state space (Z, μ)
- Generically, we have no idea about the shape of the pricing function(s) that clears the markets.

- **We** need to solve for prices as a function of a potentially very large state space (Z, μ)
- Generically, we have no idea about the shape of the pricing function(s) that clears the markets.
- **3** We need to solve for the endogenous mapping that describes how μ evolves as a function of Z.

- I We need to solve for prices as a function of a potentially very large state space (Z, μ)
- Generically, we have no idea about the shape of the pricing function(s) that clears the markets.
- **3** We need to solve for the endogenous mapping that describes how μ evolves as a function of Z.
- ▶ We will cover two papers that solve these three problems:
 - Krusell-Smith (JPE, 1998) addresses (1) and (3) but abstracts from (2) with a convenient assumption.
 - Krusell-Smith (MD, 1997) addresses all three problems.

Solving for GE with aggregate shocks is a challenging problem for three reasons:

- I We need to solve for prices as a function of a potentially very large state space (Z, μ)
- Generically, we have no idea about the shape of the pricing function(s) that clears the markets.
- **3** We need to solve for the endogenous mapping that describes how μ evolves as a function of Z.
- We will cover two papers that solve these three problems:
 - Krusell-Smith (JPE, 1998) addresses (1) and (3) but abstracts from (2) with a convenient assumption.
 - Krusell-Smith (MD, 1997) addresses all three problems.

There are other contemporaneous contributions by Den Haan (1996) and Rios-Rull (1997) as well.

Krusell and Smith (1998) found a clever way to solve this problem. The paper delivered both a seminal substantive result and a major methodological breakthrough.

- Krusell and Smith (1998) found a clever way to solve this problem. The paper delivered both a seminal substantive result and a major methodological breakthrough.
- Substantive: "Approximate aggregation"
 - In a broad class of incomplete markets models with aggregate shocks, macro aggregates look as if they are generated by a representative-agent model with the average wealth.
 - It also holds in a wide range of incomplete markets models.

- Krusell and Smith (1998) found a clever way to solve this problem. The paper delivered both a seminal substantive result and a major methodological breakthrough.
- Substantive: "Approximate aggregation"
 - In a broad class of incomplete markets models with aggregate shocks, macro aggregates look as if they are generated by a representative-agent model with the average wealth.
 - It also holds in a wide range of incomplete markets models.
- Methodological: "The Krusell-Smith method"
 - Approximate the wealth distribution with its first M moments, and see if one can obtain an equilibrium where the error from ignoring moments higher than M can be negligible.

- Krusell and Smith (1998) found a clever way to solve this problem. The paper delivered both a seminal substantive result and a major methodological breakthrough.
- Substantive: "Approximate aggregation"
 - In a broad class of incomplete markets models with aggregate shocks, macro aggregates look as if they are generated by a representative-agent model with the average wealth.
 - It also holds in a wide range of incomplete markets models.
- Methodological: "The Krusell-Smith method"
 - Approximate the wealth distribution with its first M moments, and see if one can obtain an equilibrium where the error from ignoring moments higher than M can be negligible.
 - Based on the idea of a moment-generating function of a probability distribution: $M_x(t)=E(e^{tX})$ for $t\in\mathbb{R}$

- Krusell and Smith (1998) found a clever way to solve this problem. The paper delivered both a seminal substantive result and a major methodological breakthrough.
- Substantive: "Approximate aggregation"
 - In a broad class of incomplete markets models with aggregate shocks, macro aggregates look as if they are generated by a representative-agent model with the average wealth.
 - It also holds in a wide range of incomplete markets models.
- Methodological: "The Krusell-Smith method"
 - Approximate the wealth distribution with its first M moments, and see if one can obtain an equilibrium where the error from ignoring moments higher than M can be negligible.
 - \blacksquare Based on the idea of a moment-generating function of a probability distribution: $M_x(t)=E(e^{tX})$ for $t\in\mathbb{R}$
 - Expanding the exponential: $M_X(t) = 1 + tE(X) + \frac{t^2 E(X^2)}{2!} + \frac{t^3 E(X^3)}{3!} + ... + \frac{t^n E(X^n)}{n!} + ...$

Fatih Guvenen U of Minnesota

Lecture 9: GE with Aggregate Shocks

Two types of shocks:

 \blacksquare Idiosyncratic employment status: ϵ_{e} : employed or ϵ_{u} : unemployed

Two types of shocks:

1 Idiosyncratic employment status: ϵ_e : employed or ϵ_u : unemployed

2 Aggregate productivity: z_g : expansion, z_b : recession

Two types of shocks:

Idiosyncratic employment status: ε_e : employed or ε_u : unemployed
 Aggregate productivity: z_g : expansion, z_b : recession

• $\pi_{ss'\epsilon\epsilon'}$: probability for transitioning from (ϵ_i, z_j) to $(\epsilon_{i'}, z_{j'})$

Two types of shocks:

Idiosyncratic employment status: ε_e : employed or ε_u : unemployed
 Aggregate productivity: z_g : expansion, z_b : recession

• $\pi_{ss'\epsilon\epsilon'}$: probability for transitioning from (ϵ_i, z_j) to $(\epsilon_{i'}, z_{j'})$

Assume ϵ is *i.i.d* conditional on $z \Rightarrow$ fraction of employed (hence ℓ) only depends on z.

Two types of shocks:

Idiosyncratic employment status: ε_e : employed or ε_u : unemployed
 Aggregate productivity: z_g : expansion, z_b : recession

• $\pi_{ss'\epsilon\epsilon'}$: probability for transitioning from (ϵ_i, z_j) to $(\epsilon_{i'}, z_{j'})$

- Competitive markets: $w(K,L,z) = (1-\alpha)z(K/L)^{-\alpha}$ and $r(K,L,z) = \alpha z(K/L)^{\alpha}$

$$\begin{split} \mathbf{V}(\mathbf{k},\epsilon;\boldsymbol{\mu},\mathbf{z}) &= \max_{\mathbf{c},\mathbf{k}'} \left[\mathbf{u}(\mathbf{c}) + \beta \mathbf{E}[\mathbf{V}(\mathbf{k}',\epsilon';\boldsymbol{\mu}',\mathbf{z}')] | \, \mathbf{z},\epsilon \right] \\ & \mathbf{c} + \mathbf{k}' = \mathbf{w}(\mathbf{K},\mathbf{L},\mathbf{z}) \times \ell \times \epsilon + \mathbf{r}(\mathbf{K},\mathbf{L},\mathbf{z}) \times \mathbf{k}, \qquad \mathbf{k}' \geq \mathbf{0} \\ & \boldsymbol{\mu}' = \Gamma(\boldsymbol{\mu},\mathbf{z},\mathbf{z}') \end{split}$$

Krusell-Smith Algorithm

- **1** Approximate μ_k with a finite number of moments: $\mathbf{m} \equiv (\mathbf{m}_i)_{i=1}^N$. The mapping $\Gamma(., \mathbf{Z})$ reduces to a vector-valued function: $\mathbf{m}' = \overline{\Gamma}(\mathbf{m}, \mathbf{z}) : \mathbb{R}^N \to \mathbb{R}^N$. Select a parametric family of functions for Γ . A linear or log-linear function is a common choice: $\mathbf{m}'(\mathbf{z}) = \mathbf{A}_0 + \mathbf{A}_1(\mathbf{z})\mathbf{m}$.
- **2** Make an (educated) initial guess about $(\mu_0, \mathbf{A}_0, \mathbf{A}_1)$.
- **3** Solve the individual's dynamic program (*P*₂):

$$V(\mathbf{k}, \epsilon; \mathbf{m}, \mathbf{z}) = \max_{\mathbf{c}, \mathbf{k}'} \left[U(\mathbf{c}) + \beta \mathbb{E}[V(\mathbf{k}', \epsilon'; \mathbf{m}', \mathbf{z}') | \mathbf{z}, \epsilon] \right]$$
(1)

$$c + k' = R(K, L, z) \times k + W(K, L, z) \times \overline{\ell} \times \epsilon,$$
(2)

$$\label{eq:m_star} \begin{split} \textbf{m}'(z_j) &= \textbf{A}_0(z_j) + \textbf{A}_1(z_j) \textbf{m} \qquad \text{for } j = b, g, \\ k' &\geq 0. \end{split} \tag{3}$$

Fatih Guvenen U of Minnesota

Lecture 9: GE with Aggregate Shocks

Krusell-Smith Algorithm (cont'd)

- $\begin{array}{l} \text{4. Using the resulting decision rules only, simulate } \left\{ \tilde{k}_{n,t} \right\}_{n=1,t=1}^{N,T} \text{ for } (N,T) \text{ large.} \\ \text{ Compute } \left\{ \tilde{\boldsymbol{m}}_t \right\}_{t=1}^T. \end{array}$
- 5. Discard the first $T^{\text{burn-in}}$ periods of simulated data ($0 \ll T^{\text{burn-in}} \ll T$). Using the rest, estimate ($\hat{\mathbf{A}}_0, \hat{\mathbf{A}}_1$) by running the following regressions:

$$\tilde{\boldsymbol{\mathsf{m}}}'(z_j) = \boldsymbol{\hat{\mathsf{A}}}_0(z_j) + \boldsymbol{\hat{\mathsf{A}}}_1(z_j)\tilde{\boldsymbol{\mathsf{m}}} + \nu \qquad \text{for } j = b, g, \tag{4}$$

where $\widetilde{K}\equiv\frac{1}{N}\sum_{n=1}^{N}\tilde{k}_{n}$, and $\nu_{i},i=b,g,$ denote the residuals.

6. Iterate on steps 3 to 5 until the R^2 of the regression in (4) satisfies $R^2 > 1 - \epsilon_{R^2}$ and the forecast variance satisfies $\sigma_{\nu} < \underline{\sigma}$ for very small values of ϵ_{R^2} and $\underline{\sigma}$. If accuracy remains insufficient, go back to steps 1–2 and increase M or choose a different family of functions for Γ .

Understand that this is a local method. You are solving for the stationary recursive equilibrium.

 Understand that this is a local method. You are solving for the stationary recursive equilibrium. DRAW

- Understand that this is a local method. You are solving for the stationary recursive equilibrium. DRAW
- ► ⇒ If you take a larger deviation, say in capital stock, from what is realized in the stationary equilibrium, your "equilibrium functions" will no longer be accurate.

- Understand that this is a local method. You are solving for the stationary recursive equilibrium. DRAW
- ► ⇒ If you take a larger deviation, say in capital stock, from what is realized in the stationary equilibrium, your "equilibrium functions" will no longer be accurate.
- Why care about this? Suppose you solve your model then want to study a policy experiment where you eliminate tax on savings. You'd need to write a separate program from the "transition" between the two stationary equilibria.

- Understand that this is a local method. You are solving for the stationary recursive equilibrium. DRAW
- ► ⇒ If you take a larger deviation, say in capital stock, from what is realized in the stationary equilibrium, your "equilibrium functions" will no longer be accurate.
- Why care about this? Suppose you solve your model then want to study a policy experiment where you eliminate tax on savings. You'd need to write a separate program from the "transition" between the two stationary equilibria.
- If you solve for the full recursive equilibrium you would not need to do this.

- Understand that this is a local method. You are solving for the stationary recursive equilibrium. DRAW
- ► ⇒ If you take a larger deviation, say in capital stock, from what is realized in the stationary equilibrium, your "equilibrium functions" will no longer be accurate.
- Why care about this? Suppose you solve your model then want to study a policy experiment where you eliminate tax on savings. You'd need to write a separate program from the "transition" between the two stationary equilibria.
- If you solve for the full recursive equilibrium you would not need to do this.
- However, solving for the full equilibrium is often much harder and so is often "over-kill."

Fatih Guvenen U of Minnesota Lecture 9: GE with Aggregate Shocks

Krusell-Smith: Details

- **I** As with many numerical methods, a good initial guess is critical.
 - One idea (which KS used) is to first solve a rep-agent RBC model with same parameterization as KS model. Then use its coefficients (a₀, a₁, b₀, b₁) as initial guess.
 - We will see some more complex examples next week.

Krusell-Smith: Details

As with many numerical methods, a good initial guess is critical.

- One idea (which KS used) is to first solve a rep-agent RBC model with same parameterization as KS model. Then use its coefficients (a₀, a₁, b₀, b₁) as initial guess.
- We will see some more complex examples next week.

2 Can't we update H without simulating? Yes we can.

Den Haan and Rendahl (2009) propose a method where

$$K^{'}=H_{j}(K,z)=\int k_{j}^{'}(k,\epsilon;\Gamma,z)d\Lambda(k,\epsilon)$$

where $\Lambda({\bf k},\epsilon)$ is the distribution of households across capital and employment status

 This works well if you choose a parameterize the decision rules in particular way.

Krusell-Smith: Details

I As with many numerical methods, a good initial guess is critical.

- One idea (which KS used) is to first solve a rep-agent RBC model with same parameterization as KS model. Then use its coefficients (a₀, a₁, b₀, b₁) as initial guess.
- We will see some more complex examples next week.

2 Can't we update H without simulating? Yes we can.

Den Haan and Rendahl (2009) propose a method where

$$K^{'}=H_{j}(K,z)=\int k_{j}^{'}(k,\epsilon;\Gamma,z)d\Lambda(k,\epsilon)$$

where $\Lambda({\bf k},\epsilon)$ is the distribution of households across capital and employment status

- This works well if you choose a parameterize the decision rules in particular way.
- See "Solving the Incomplete Markets Model with Aggregate Uncertainty using Explicit Aggregation" on Wouter Den Haan's web site.

Fatih Guvenen U of Minnesota

Accuracy of the Solution

Final solution in Krusell-Smith's baseline model:

$$\begin{split} \log \widetilde{K}' &= 0.085 + 0.965 \log \widetilde{K} \quad \text{for } Z = Z_{\rm b}, \quad {\rm R}^2 = 0.999998, \ \sigma_{\nu}^2 = 0.0036\% \\ (5) \\ \log \widetilde{K}' &= 0.095 + 0.962 \log \widetilde{K} \quad \text{for } Z = Z_{\rm g} \quad {\rm R}^2 = 0.999998, \ \sigma_{\nu}^2 = 0.0028\% \\ (6) \end{split}$$

• Notice how high the R^2 is!

Can you get away with something lower? Anything below R² = 0.999 is typically not an accurate solution. (More on this in a moment).

Substantive Results: A Digression

How Much Wealth Inequality Does the K-S Model Generate?

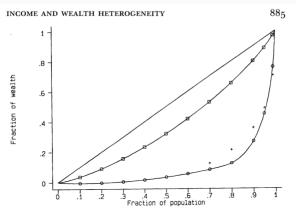


FIG. 3.—Lorenz curves for wealth holdings (+ refers to the data, \Box to the benchmark model, and \bigcirc to the stochastic- β model).

Baseline model: Not much inequality. Gini is 0.25, top 1% holds 3% of wealth.

Fatih Guvenen U of Minnesota

Stochastic-Beta Model

- To generate more wealth inequality, K-S introduce stochastic-β or patience heterogeneity:
 - $\tilde{\beta}_t$: Markov chain with persistence matched to length of a generation.
- ► How well does the Krusell-Smith method work?

 $\log \tilde{K}' = 0.095 + 0.961 \log \tilde{K} \text{ for } Z = Z_b, \quad R^2 = 0.999985, \ \sigma = 0.0077\%$ $\log \tilde{K}' = 0.100 + 0.961 \log \tilde{K} \text{ for } Z = Z_g \quad R^2 = 0.999991, \ \sigma_n^2 = 0.0056\%,$

Stochastic-Beta Model

- To generate more wealth inequality, K-S introduce stochastic-β or patience heterogeneity:
 - $\tilde{\beta}_t$: Markov chain with persistence matched to length of a generation.
- ► How well does the Krusell-Smith method work?

$$\begin{split} \log \widetilde{K}' &= 0.095 + 0.961 \log \widetilde{K} \quad \text{for } Z = Z_b, \quad R^2 = 0.999985, \ \sigma = 0.0077\% \\ \log \widetilde{K}' &= 0.100 + 0.961 \log \widetilde{K} \quad \text{for } Z = Z_g \quad R^2 = 0.999991, \ \sigma_u^2 = 0.0056\%, \end{split}$$

• How much wealth inequality does stochastic- β generate? A lot!

TABLE	1	

DISTRIBUTION OF WEALTH: MODELS AND DATA

	PE		FAGE C ELD BY	of Wea Top	LTH	Fraction with	Gini
Model	1%	5%	10%	20%	30%	WEALTH < 0	0.1111
Benchmark model	3	11	19	35	46	0	.25
Stochastic-β model	24	55	73	88	92	11	.82
Data	30	51	64	79	88	11	.79

Fatih Guvenen U of Minnesota Lecture 9: GE with Aggregate Shocks

Approximate Aggregation

		TABLE 2		
	Aggreg	ate Time Serif	ES	
Model	$Mean(k_t)$	$\operatorname{Corr}(c_i, y_i)$	Standard Deviation (i_l)	$\operatorname{Corr}(y_{t}, y_{t-4})$
Benchmark:				
Complete markets	11.54	.691	.031	.486
Incomplete markets	11.61	.701	.030	.481
$\sigma = 5$:				
Complete markets	11.55	.725	.034	.551
Incomplete markets	12.32	.741	.033	.524
Real business cycle:				
Complete markets	11.56	.639	.027	.342
Incomplete markets	11.58	.669	.027	.339
Stochastic-β:				
Incomplete markets	11.78	.825	.027	.459

Fatih Guvenen U of Minnesota

How do the Decision Rules Look Like?

Figure 1: Solution to Krusell-Smith Model

(a) Law of Motion for Capital (b) Individual Decision Rule 20 good state employed 12.2 unemployed bad state --- 45 degree 45 degree In 12.0 Capital 12.0 Capital 12.0 Capital 12.0 In 11.8 Capital 11.6 Ca Tomorrow's Individual Capital 11.0 12.2 10 20 11.0 5 Today's Aggregate Capital Today's Individual Capital

Fatih Guvenen U of Minnesota Lecture 9: GE with Aggregate Shocks

Krusell-Smith call their finding that the first moment is sufficient "approximate aggregation."

- Krusell-Smith call their finding that the first moment is sufficient "approximate aggregation."
- A major reason for outcome is that savings rule is approximately linear in assets.

- Krusell-Smith call their finding that the first moment is sufficient "approximate aggregation."
- A major reason for outcome is that savings rule is approximately linear in assets.
- So redistributing wealth from one agent to another would almost not affect aggregate savings.

- Krusell-Smith call their finding that the first moment is sufficient "approximate aggregation."
- A major reason for outcome is that savings rule is approximately linear in assets.
- So redistributing wealth from one agent to another would almost not affect aggregate savings.
- ► This depends on a few key assumptions:
 - identical preferences (Rubinstein showed that with such preferences it's easy to get full demand aggregation).
 - single asset (will talk about multiple assets in next lecture).
 - big aversion to constraints (zero labor income makes it very costly to be at constraint).
 - few people at the constraint and even if there are, they have no wealth to affect prices.

(Nonlinear) Effect of Income Persistence on Inequality

TABLE 1. Effect of increased idiosyncratic income persistence

		ρ		
Variable	0.50	0.98	0.99	1.00
Equilibrium interest rate, %	4.12	4.07	4.06	4.07
Aggregate capital	11.60	11.67	11.68	11.66
SD of capital	1.47	6.42	5.94	0.36
Skewness of capital	-0.03	2.58	3.60	4.98
Gini coefficient of capital	0.067	0.255	0.217	0.018

• Effect of ρ nonlinear at the top: look at $\sigma(K)$ and Gini of wealth.

Back to Computation: Checking Accuracy of Solution

- Approximate aggregation has been found to hold in a wide range of GE models with heterogeneity:
 - ? reports that adding higher moments added little precision. ? follows Midrigan and does something similar.
 - Khan and Thomas (AER, 2007; ECMA, 2008) get good results using the mean only.
 - Krusell, Mukuyama, Sahin (labor search application)
 - Bloom (ECMA, 2009), Bloom et al (ECMA, 2018): Rich GE firm dynamics model with uncertainty shocks: K-S still works.
 - Many many more..

JEDC 2010 Special Issue on Krusell-Smith: Wide Variation in Speed and Accuracy of Algorithms

Figure 2: Different Algorithms for Solving Krusell-Smith (1998)

Table 2:	Computation	times
----------	-------------	-------

algorithm	programming language	time	authors
BInduc	Matlab	47 minutes	Michael Reiter
KS-num	Fortran	324 minutes	Lilia Maliar, Sergui Maliar, Fernando Valli
KS-sim	Matlab	310 minutes	Eric Young
Param	Fortran	2739 minutes	Yann Algan, Olivier Allais, Wouter den Haan
Xpa	Matlab	7 minutes	Wouter den Haan, Pontus Rendahl
Penal	Matlab	< 1 second!	Henry Kim, Robert Kollmann, Jinill Kim

Notes: This table reports the time it takes to solve the model when $\gamma = 1.1$, starting at the solution for $\gamma = 1$.

Checking for Accuracy of your Solution

Den Haan's experiment: Suppose the true solution to K-S model is given by:

$$\log \mathbf{K}' = \alpha_1 + \alpha_2 \mathbf{z} + \alpha_3 \log \mathbf{K}$$

with parameters in the first row of table below.

- Change α_3 such that the R^2 gradually falls to values shown in the following rows while keeping mean K constant.
- Check what happens to implied standard deviation of capital (last column):

Table	1: Meaningle	ssness of the	R^2	
			implie	d properties
equation	R^2	$\widehat{\sigma}_{u}$	mean	stand. dev.
$\alpha_3 = 0.96404$ (fitted regression)	0.99999729	4.1×10^{-5}	3.6723	0.0248
$\alpha_3 = 0.954187$	0.99990000	$2.5 imes 10^{-4}$	3.6723	0.0217
$\alpha_3 = 0.9324788$	0.99900000	$7.9 imes10^{-4}$	3.6723	0.0174
$\alpha_3 = 0.8640985$	0.99000000	$2.5 imes 10^{-3}$	3.6723	0.0113

Notes: The first row corresponds to the fitted regression equation. The subsequent rows are based on aggregate laws of motion in which the value of α_3 is changed until the indicated level of the R^2 is obtained. α_1 is adjusted to keep the fitted mean capital stock equal.

Experiments to Check Accuracy: Experiment 1

 $\label{eq:GP:logK} \begin{array}{l} \mbox{True DGP: log}\, \mathrm{K}' = \alpha_0 + \alpha_1 \log \mathrm{K} + \alpha_2 \mathrm{z} + \alpha_3 \log \mathrm{K}_{-1} \end{array}$ Approximated DGP: log $\mathrm{K}' = \alpha_0 + \alpha_1 \log \mathrm{K} + \alpha_2 \mathrm{z}$

Experiment 2: $\log K' = \alpha_0 + \alpha_{1,t} \log K + \alpha_2 z$. Ignore time variation in α_1 .

Parameter	Experin	nent #1	Experim	ient #2
	#1.1	#1.2	#2.1	#2.2
α_0	0	0		0
α_1	1.08	1.38	0.65	0.65
α_2	1	1	1	1
$\alpha 3$	-0.1	-0.4	0.3	0.3
α_4	-	-	0.01	0.01
α_5	-	-	50	50
Po	0	0	0	0
ρ_1	0	0	0.95	0
σ	0.00472	0.15436	$6.3891 * 10^{-4}$	$8.616 * 10^{-3}$

Table 2: Parameter Values

Notes: All parameter sets imply a standard deviation for the underlying series equal to 2.5%.

Checking Accuracy

	Experim	ent #1.1	Experim	ent #1.2
Т	3000	50000	3000	50000
average R^2 (level)	0.9996	0.9996	0.9952	0.9955
minimum R^2 (level)	0.9995	0.9996	0.9940	0.9951
average R^2 (Δ)	0.9901	0.9901	0.8413	0.8411
minimum R^2 (Δ)	0.9901	0.9901	0.8408	0.8410
average $\hat{\sigma}_u$	0.047%	0.047%	0.168%	0.168%
maximum $\hat{\sigma}_u$	0.049%	0.048%	0.174%	0.170%
	Experim	nent #2.1	Experim	ent $\#2.2$
1	Laperin	10110 ± 2.1	Linperin	10110 11 2.2
T	3000	50000	3000	50000
T average R^2 (level)	1 1			
-	3000 0.99993	50000	3000	50000
average R^2 (level)	3000 0.99993	50000 0.99993	3000 0.99986	50000 0.99986
average R^2 (level) minimum R^2 (level)	3000 0.99993 0.99983	50000 0.99993 0.99991	3000 0.99986 0.99971	50000 0.99986 0.99982
average R^2 (level) minimum R^2 (level) average R^2 (Δ)	3000 0.99993 0.99983 0.97695	50000 0.99993 0.99991 0.97559	3000 0.99986 0.99971 0.99879	50000 0.99986 0.99982 0.99880

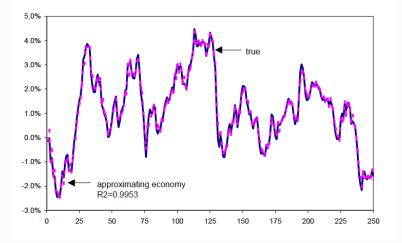
Table 3: Traditional Accuracy Tests

Notes: The standard deviation of the true series is equal to 2.5%. R^2 for the "level" (Δ) regression is based on a regression with m_{t+1} ($m_{t+1} - m_t$) as the dependent variable.

Essential Accuracy Plot

Figure 3: Updated Values of K used in Approximating Law

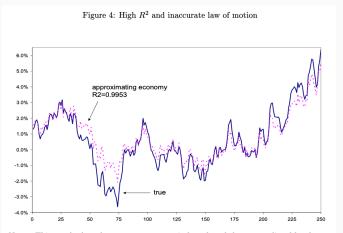
Panel B: Experiment 1.2



Fatih Guvenen U of Minnesota Lecture 9: GE with Aggregate Shocks

Essential Accuracy Plot

Figure 4: Updated Values of K not used in Approximating Law



Notes: This graph plots the true aggregate capital stock and the one predicted by the approximate aggregate law of motion *when* the input of the approximation is the lagged value generated by the approximation *not* the true lagged value (as is done when calculating the R^2 .

Rules of Thumb

 \blacksquare Do not rely on R^2 and residual variance alone.

- These are average measures. Can hide big inaccuracies confined to small areas that can be very important.
- R² is scaled by the LHS of the regression. An alternative is to check the R² of:

 $\log \mathbf{K}' - \log \mathbf{K} = \alpha_1 + \alpha_2 \mathbf{z} + (\alpha_3 - 1) \log \mathbf{K}$

Rules of Thumb

 \blacksquare Do not rely on R^2 and residual variance alone.

- These are average measures. Can hide big inaccuracies confined to small areas that can be very important.
- R² is scaled by the LHS of the regression. An alternative is to check the R² of:

 $\log \mathbf{K}' - \log \mathbf{K} = \alpha_1 + \alpha_2 \mathbf{z} + (\alpha_3 - 1) \log \mathbf{K}$

- Also check multi-period forecast errors. (R² checks only one step ahead!)
 - Krusell and Smith checked 25 years ahead (100 periods)

Rules of Thumb

 \blacksquare Do not rely on R^2 and residual variance alone.

- These are average measures. Can hide big inaccuracies confined to small areas that can be very important.
- R² is scaled by the LHS of the regression. An alternative is to check the R² of:

 $\log \mathbf{K}' - \log \mathbf{K} = \alpha_1 + \alpha_2 \mathbf{z} + (\alpha_3 - 1) \log \mathbf{K}$

- Also check multi-period forecast errors. (R² checks only one step ahead!)
 - Krusell and Smith checked 25 years ahead (100 periods)
- Den Haan suggests comparing the law of motion generated by simulated data by plotting the "essential accuracy plot" shown above.

Wide Variation in Speed of Algorithms

Figure 5: Different Algorithms for Solving Krusell-Smith (1998)

Table 2: Computation times

algorithm	programming language	time	authors
BInduc	Matlab	47 minutes	Michael Reiter
KS-num	Fortran	324 minutes	Lilia Maliar, Sergui Maliar, Fernando Valli
KS-sim	Matlab	310 minutes	Eric Young
Param	Fortran	2739 minutes	Yann Algan, Olivier Allais, Wouter den Haan
Xpa	Matlab	7 minutes	Wouter den Haan, Pontus Rendahl
Penal	Matlab	< 1 second!	Henry Kim, Robert Kollmann, Jinill Kim
Notes: This	table reports the time it ta	akes to solve the	e model when $\gamma = 1.1$, starting at

Notes: This table reports the time it takes to solve the model when $\gamma = 1.1$, starting at the solution for $\gamma = 1$.

 Solve a representative agent asset pricing model for 7 different parameterizations and compare the accuracy of several solution algorithms

Christiano and Fisher: Solution Methods

Computational strategy ^a	Object approximated	Residual weighting scheme	Evaluation of integrals
Spectral methods ^b			
Conventional PEA	Marcet conditional expectation	Model-implied density for capital and technology	Monte Carlo
Modified conventional PEA	Marcet conditional expectation	Exogenous density for capital and technology	Monte Carlo
Chebyshev PEA	Marcet and Wright-Williams conditional expectation	Dirac delta functions (if collocation) Galerkin (if Galerkin)	Quadrature
PEA collocation	Marcet and Wright-Williams conditional expectation	Dirac delta functions	Quadrature
PEA Galerkin	Marcet conditional expectation	Galerkin	Quadrature
Spectral-Galerkin	Policy and multiplier functions	Galerkin	Quadrature
Finite element methods ^e			
FEM collocation	Policy and multiplier functions	Dirac delta functions	Quadrature
FEM Galerkin	Policy function	Galerkin	Quadrature

*These names are intended as a convenient shorthand only. For example, technically PEA Galerkin is a Spectral Galerkin method too.

^bWe used polynomials.

°We used piecewise linear functions.

Christiano and Fisher: Model Parameterizations

Table 2 Parameterizations considered

	Parameter values							
Model	β	γ	α	δ	σ	ρ		
(1)	1.031/4	1	0.3	0.02	0.23	0		
(2)	1.031/4	10	0.3	0.02	0.23	0		
(3)	1.031/4	1	0.05	0.02	0.0382	0		
(4)	1.031/4	1	0.3	0.5	0.675	0		
(5)	1.031/4	1	0.3	0.02	0.23	0.95		
(6)	1.031/4	1	0.3	0.02	0.40	0		
(7)	1.031/4	10	0.1	0.02	0.23	0.95		

Accuracy for Quantities: OK

L.J. Christiano, J.D.M. Fisher / Journal of Economic Dynamics & Control 24 (2000) 1179-1232 1207

Table 3 Bias and Monte Carlo variation in conventional PEA

Statistic	Parameterizations							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Panel A – Quantities								
σ,	66.0	67.9	3.95	68.8	84.8	125.0	34.2	
	[− 0.2]	[-0.6]	[-0.04]	[− 0.3]	[0.1]	[-0.3]	[− 0.2]	
	(0.004)	(0.02)	(0.001)	(0.01)	(0.02)	(0.003)	(0.04)	
	⟨0.1⟩	<0.5>	<0.01>	<0.1>	<0.5>	<0.1>	<0.9>	
σε	10.2	7.50	1.01	34.3	49.7	45.4	12.4	
	[− 1.1]	[1.1]	[- 0.2]	[− 0.9]	[− 0.2]	[− 1.0]	[6.3]	
	(0.03)	(0.1)	(0.04)	(0.01)	(0.02)	(0.01)	(0.5)	
	<0.7>	<1.6>	<0.9>	<0.3>	<0.0>	<0.3>	<10.6>	
σ	61.9	65.9	3.42	36.1	43.8	80.8	23.1	
	[0.04]	[-0.8]	[0.3]	[− 0.1]	[0.3]	[0.2]	[-3.8]	
	(0.01)	(0.03)	(0.01)	(0.02)	(0.1)	(0.01)	(0.3)	
	<0.2>	<0.6>	<0.2>	<0.4>	⟨1.4⟩	<0.3>	<7.3>	

Asset Prices more Sensitive than Quantities

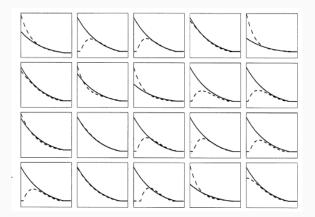
Panel B – Asset prices and returns							
ER*	3.20	3.08	3.01	309.5	2.94	59.8	1.44
	[-0.1]	[25.1]	[0.4]	[2.0]	[-0.2]	[-1.7]	[1.6e 8]
	(0.05)	(1.9)	(0.02)	(0.1)	(0.1)	(0.04)	(1.6e 8)
	⟨1.04⟩	<33.6>	<0.5>	<1.1>	(2.7)	<0.9>	<2124>
ER ^f	3.00	2.47	3.00	8.6	2.88	19.7	- 5.42
	[1.8]	[9.0]	[0.6]	[30.3]	[-0.1]	[2.6]	[36.8]
	(0.01)	(0.3)	(0.001)	(0.1)	(0.01)	(0.03)	(2.7)
	<0.13>	<6.3>	<0.01>	⟨1.4⟩	<0.2>	<0.6>	<42.3>
$E(R^e - R^f)$	0.20	0.60	0.02	300.9	0.06	40.1	6.86
	[-25.8]	[93.5]	[-77.6]	[1.2]	[-3.5]	[− 3.8]	[3.3e 7]
	(0.7)	(8.5)	(4.6)	(0.1)	(6.1)	(0.04)	(3.3e 7)
	<20.4>	<97.9>	<460.7>	<1.1>	<141.3>	<1.0>	<2124>

Asset Prices more Sensitive than Quantities

Panel B – Asset prices and returns						
ER ^e	[1.6e 8] (1.6e 8) ⟨2124⟩	[4.7e 7] (4.6e 7) <687>	$\begin{bmatrix} -13.0 \end{bmatrix}$ (8.1) $\langle 65.8 \rangle$	[- 7.5] (24.2) 〈159〉	[- 29.8]	[— 8.6]
ER^{f}	[36.8] (2.7) 〈42.3〉	[4.2] (1.7) ⟨11.5⟩	[-1.7] (-1.6) $\langle 11.8 \rangle$	[-0.8] (5.0) $\langle 35.4 \rangle$	[- 4.2]	[-0.4]
$E(R^e-R^f)$	[3.3e7] (3.3e7) ⟨2124⟩	[9.9e 6] (9.6 e 6) <687>	[-4.1] (2.9) $\langle 21.1 \rangle$	[1.0] (8.7) ⟨61.1⟩	[- 9.6]	[-2.1]
σ_q	[7.9] (1.1) 〈22.0〉	[-1.9] (0.9) $\langle 6.6 \rangle$	[-2.7] (1.2) $\langle 8.8 \rangle$	[− 5.0] (3.3) ⟨24.6⟩	[— 4.9]	[- 1.2]
$\rho(y,q)$	[- 0.3] (0.7) <14.5>	[-1.0] (0.9) $\langle 6.4 \rangle$	[-1.9] (1.0) $\langle 6.9 \rangle$	[-3.5] (1.8) $\langle 13.3 \rangle$	[-0.8]	[- 1.2]
$\operatorname{Freq}(q < 1)$	[- 7.2] (0.6) <13.3>	[-4.6] (0.9) $\langle 6.8 \rangle$	[-2.0] (1.0) $\langle 6.9 \rangle$	[-3.9] (1.8) <12.9>	[0.1]	[- 1.1]

Understanding the Source of the Problem

Figure 6: Exact vs Numerically Computed Savings Decision Rules (for Different State Variable Values)



Back to Approximate Aggregation:

When Does it Hold/Not Hold?

Approximate Aggregation holds when aggregate capital is a sufficient statistic/state variable for the wealth distribution in a GE model with incomplete markets.

When Does it Hold/Not Hold?

- Approximate Aggregation holds when aggregate capital is a sufficient statistic/state variable for the wealth distribution in a GE model with incomplete markets.
- Note that Krusell-Smith method is not the same as approximate aggregation.
 - Even if moments other than aggregate capital is needed to represent the wealth distribution, Krusell-Smith could work, if one can find the right combination of moments, a good family for law of motions H that satisfies all equilibrium conditions.

When Does it Hold/Not Hold?

- Approximate Aggregation holds when aggregate capital is a sufficient statistic/state variable for the wealth distribution in a GE model with incomplete markets.
- Note that Krusell-Smith method is not the same as approximate aggregation.
 - Even if moments other than aggregate capital is needed to represent the wealth distribution, Krusell-Smith could work, if one can find the right combination of moments, a good family for law of motions H that satisfies all equilibrium conditions.
- In fact, there is a broad set of GE models with lots of bells and whistles where Krusell-Smith method still works.

Krusell-Smith: When Does it Work?

	Approx. Agg. Obtains?	K-S works?	What moments sued
Krusell-Smith (1997, MD): 2 asset problem	yes	yes	$\overline{\mathrm{K}}$, but nonlinear bond price eq.
Krusell-Smith (1998, JPE)	yes	yes	$\overline{\mathrm{K}}$
?, IER	yes	yes	
?, ECMA	yes	yes	
?, ECMA	yes	yes	
?, RED	yes	yes	
?, JME	yes	yes	
?, QJE	yes	yes	
?, ECMA	yes	yes	
Bloom et al (ECMA, 2018)	yes	yes	
?, RED	no	yes	$\overline{\mathrm{K}}$, cond. exp. equity premium
Guvenen (2001, JME)	no*	no	2 pt wealth distr needed. Full RCE solved +
Guvenen (2009, ECMA)	no*	no	Eq. functions very nonlinear
Kubler and Schmedders (2002, MD)	no	no	Wealth distr. is not sufficient state var.
Krueger and Kubler (2004, JEDC)	no	no	Wealth distr. is not sufficient state var.

When Does K-S Not Work Well?

 Broadly speaking, two types of features make approximate aggregation not hold well.

When Does K-S Not Work Well?

- Broadly speaking, two types of features make approximate aggregation not hold well.
- ▶ OLG structure (e.g., Krueger and Kubler (2004), ?):
 - because of shorter horizon and young starting with low wealth, many individuals in the nonlinear part of their savings decision rule.

When Does K-S Not Work Well?

- Broadly speaking, two types of features make approximate aggregation not hold well.
- ► OLG structure (e.g., Krueger and Kubler (2004), ?):
 - because of shorter horizon and young starting with low wealth, many individuals in the nonlinear part of their savings decision rule.
- Aggregate shocks with redistributional structure (e.g., Guvenen (2001, 2009) and others with capitalist-entrepreneur/worker models):
 - Aggregate shocks have multiple effects, some affecting groups in same direction (through wage effect), others in opposite directions (different exposures to prices movements).
 - Standard GE models like K-S also have this feature but it is much more muted.

Guvenen (2009, ECMA):

- Production economy with two assets: Firm's capital (stock) and a household bond.
- ► Two types of agents: stockholders (h) and bondholders (n). The latter cannot hold the stock.
- Population share of stockholders is μ , and share of bondholders is 1μ .

Guvenen (2009, ECMA):

- Production economy with two assets: Firm's capital (stock) and a household bond.
- ► Two types of agents: stockholders (h) and bondholders (n). The latter cannot hold the stock.
- Population share of stockholders is μ , and share of bondholders is 1μ .
- ► Aggregate state vector: (K, B, Z)= (capital stock, bondholders aggregate bond holding, aggregate shock).
- (K, B) represents the entire wealth distribution since there are two agents.

Guvenen (2009, ECMA):

- Production economy with two assets: Firm's capital (stock) and a household bond.
- ► Two types of agents: stockholders (h) and bondholders (n). The latter cannot hold the stock.
- Population share of stockholders is μ , and share of bondholders is 1μ .
- ► Aggregate state vector: (K, B, Z)= (capital stock, bondholders aggregate bond holding, aggregate shock).
- ► (K, B) represents the entire wealth distribution since there are two agents.
- ▶ Both agents face portfolio constraints: $s'_h \ge 0$ and $b_h \ge \underline{b_1}$, and $b_n \ge \underline{b_2}$.

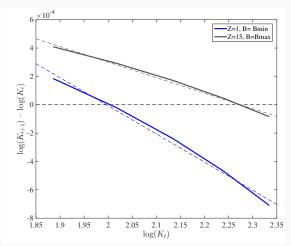
So in equilibrium, stockholders as a group cannot hold more bond than what non-stockholders can borrow:

- So in equilibrium, stockholders as a group cannot hold more bond than what non-stockholders can borrow:
- ► In other words, since bond market clearing gives: $\mu b_h(K, B, Z) + (1 - \mu)b_n(K, B, Z) = 0$, for all aggregate states (K, B_{min}, Z) where $B_{min} = (1 - \mu)\underline{b_2}$ we must have $b_h(K, B_{min}, Z) = (1 - \mu)\underline{b_2}/\mu$ must be an optimal choice.
- Asset prices adjust near this constraint—sometimes very nonlinearly—to make this possible.

Law of Motion for Capital

Law of motion for capital has fairly low curvature in K direction.

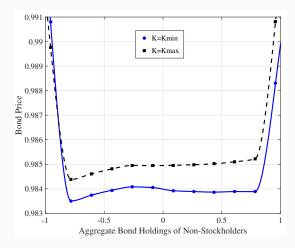
Figure 7: Evolution of Aggregate (Log) Capital



Fatih Guvenen U of Minnesota Lecture 9: GE with Aggregate Shocks

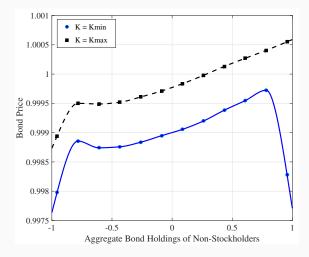
Equilibrium Bond Price Function, $Z = Z_{min}$

Significant curvature near grid limits (borrowing limit of each group).



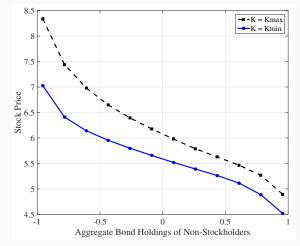
Equilibrium Bond Price Function, $Z = Z_{median}$

 Direction and shape of curvature changes significantly with level of (K,Z)



Equilibrium Stock Price Function, $Z = Z_{max}$

Less curvature for high Z. Not evidence that there is little curvature for other (Z, K) combinations.



Fatih Guvenen U of Minnesota

Lecture 9: GE with Aggregate Shocks

- A different and deeper question is whether the wealth distribution itself is a sufficient statistic to write a sequential GE problem in recursive form.
- In general: no proof that a recursive equilibrium exists with wealth as a state variable.
- A recursive equilibrium exists using an expanded state vector: Jianjun Miao (2006), Competitive Equilibria of Economies with a Continuum of Consumers and Aggregate Shocks, JET, 128, 274-298.

References