Use It Or Lose It: Efficiency Gains from Wealth Taxation

Fatih Guvenen, Gueorgui Kambourov, Burhan Kuruscu, Sergio Ocampo, Daphne Chen

October 18, 2022

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Standard Answer: The two taxes are equivalent with $\tau_a = \mathbf{r} \times \tau_k \dots$

■ assuming *r* is the same for all individuals.

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Standard Answer: The two taxes are equivalent with $\tau_a = \mathbf{r} \times \tau_k \dots$

■ assuming *r* is the same for all individuals.

► Our Research Agenda: Revisit question allowing for return heterogeneity

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Standard Answer: The two taxes are equivalent with $\tau_a = \mathbf{r} \times \tau_k \dots$

assuming r is the same for all individuals.

Our Research Agenda: Revisit question allowing for return heterogeneity

This paper: Quantitative analysis in a rich OLG model calibrated to US data.

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Standard Answer: The two taxes are equivalent with $\tau_a = \mathbf{r} \times \tau_k \dots$

assuming r is the same for all individuals.

► Our Research Agenda: Revisit question allowing for return heterogeneity

- **This paper:** Quantitative analysis in a rich OLG model calibrated to US data.
- Second paper: Theoretical analysis of optimal combination of wealth and capital income taxes.

Question: How does taxing the stock of capital differ from taxing the income flow from capital?

Capital income tax: $a_{after-tax} = a + (1 - \tau_k) \cdot r \cdot a$ Wealth tax: $a_{after-tax} = (1 - \tau_a) \cdot a + r \cdot a$

Standard Answer: The two taxes are equivalent with $\tau_a = \mathbf{r} \times \tau_k \dots$

assuming r is the same for all individuals.

► Our Research Agenda: Revisit question allowing for return heterogeneity

- **This paper:** Quantitative analysis in a rich OLG model calibrated to US data.
- Second paper: Theoretical analysis of optimal combination of wealth and capital income taxes.
- Short Answer: The two taxes have very different sometimes opposite implications.

Why Study Capital Taxation with Heterogeneous Returns?

At least 4 reasons:

1. Empirical: Growing number of papers document persistent return heterogeneity. (Fagereng et al (ECMA, 2020), Bach et al (AER, 2020), Smith, et al (QJE, 2019), Becker and Hvide (RF, 2022)

- 1. Empirical: Growing number of papers document persistent return heterogeneity. (Fagereng et al (ECMA, 2020), Bach et al (AER, 2020), Smith, et al (QJE, 2019), Becker and Hvide (RF, 2022)
- 2. Technical: Capital taxes paid by the very wealthy.
 - But: models struggle to generate plausible wealth inequality.
 - Return heterogeneity does (Thick Pareto tail, fast wealth accumulation of very rich) (Benhabib et al (2011–2018), Gabaix et al (ECMA, 2017), Jones and Kim (JPE, 2018), etc)

- 1. Empirical: Growing number of papers document persistent return heterogeneity. (Fagereng et al (ECMA, 2020), Bach et al (AER, 2020), Smith, et al (QJE, 2019), Becker and Hvide (RF, 2022)
- 2. Technical: Capital taxes paid by the very wealthy.
 - But: models struggle to generate plausible wealth inequality.
 - Return heterogeneity does (Thick Pareto tail, fast wealth accumulation of very rich) (Benhabib et al (2011–2018), Gabaix et al (ECMA, 2017), Jones and Kim (JPE, 2018), etc)
- 3. Practical: Wealth taxation is a policy tool used by some governments.
 - We need to provide better guidance to policy makers.

- 1. Empirical: Growing number of papers document persistent return heterogeneity. (Fagereng et al (ECMA, 2020), Bach et al (AER, 2020), Smith, et al (QJE, 2019), Becker and Hvide (RF, 2022)
- 2. Technical: Capital taxes paid by the very wealthy.
 - But: models struggle to generate plausible wealth inequality.
 - Return heterogeneity does (Thick Pareto tail, fast wealth accumulation of very rich) (Benhabib et al (2011–2018), Gabaix et al (ECMA, 2017), Jones and Kim (JPE, 2018), etc)
- 3. Practical: Wealth taxation is a policy tool used by some governments.
 - We need to provide better guidance to policy makers.
- 4. Theoretical: Interesting new economic mechanisms. Example next.

► One-period model.

- Government taxes to finance G = \$50.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.

- One-period model.
- Government taxes to finance G = \$50.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- Heterogeneity in investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ return.
 - (Mike) High ability: earns $r_m = 20\%$ return.

Capital Income Tax

	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$	
	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _m = 20%)
Wealth	\$1000	\$1000
Before-tax Income	0	\$200
	$\tau_k = 255$	$\frac{50}{200}$
Tax liability		

After-tax return

After-tax wealth ratio

Capital Income Tax

	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$	
	Fredo (<i>r_f</i> = 0%)	Mike (<i>r</i> _m = 20%)
Wealth	\$1000	\$1000
Before-tax Income	0	\$200
	$\tau_{k} = 255$	$\% (= \frac{50}{200})$
Tax liability	0	$50 (= 200 \times \tau_k)$
After-tax return		
After-tax wealth ratio		

Capital Income Tax

	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$	
	Fredo (<i>r_f</i> = 0%)	Mike (<i>r</i> _m = 20%)
Wealth	\$1000	\$1000
Before-tax Income	0	\$200
	$\tau_{k} = 255$	$\frac{50}{200}$
Tax liability	0	$50 (= 200 \times \tau_k)$
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$
After-tax wealth ratio	1.15 (=	$^{1150}/_{1000})$

	Capital Income Tax $a_{i, ext{after-tax}} = a_i + (1 - au_{ extsf{k}}) r_i a_i$		Wealth Tax (on Book Value	
	Fredo (<i>rf</i> = 0%)	Mike (<i>r_m</i> = 20%)		
Wealth	\$1000	\$1000		
Before-tax Income	0	\$200		
	$\tau_k = 259$	$\frac{50}{200}$		
Tax liability	0	$50 (= 200 \times \tau_k)$		
After-tax return	0%	$15\% \left(=rac{200-50}{1000} ight)$		
After-tax wealth ratio	1.15 (=	1150/1000)		

	Capital Income Tax $a_{i, ext{after-tax}} = a_i + (1 - au_{ extsf{k}}) r_i a_i$		Wealth Tax (on Book Value!)	
			$a_{i, ext{after-tax}} = (1- au_a)a_i + r_ia_i$	
	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _m = 20%)	Fredo (<i>rf</i> = 0%)	Mike (<i>r_m</i> = 20%)
Wealth	\$1000	\$1000	\$1000	\$1000
Before-tax Income	0	\$200	0	\$200
	$ au_{k} = 25\% \left(= \frac{50}{200} \right)$		$ au_{ m a} = 2.5\% \left(= rac{50}{ m 2000} ight)$	
Tax liability	0	$50 (= 200 \times \tau_k)$		
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$		
After-tax wealth ratio	1.15 (=	1150/1000)		

	Capital Income Tax		Wealth Tax (on Book Value!)		
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, ext{after-tax}} = (1- au_a)a_i + r_ia_i$		
	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _{<i>m</i>} = 20%)	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _m = 20%)	
Wealth	\$1000	\$1000	\$1000	\$1000	
Before-tax Income	0	\$200	0	\$200	
	$ au_{k} = 25\% \left(= rac{50}{200} ight)$		$ au_{a} = 2.5\% \left(= \frac{50}{2000} \right)$		
Tax liability	0	$50 (= 200 \times \tau_k)$	$25 (= 1000 \times \tau_a)$	$\$25 (= 1000 \times \tau_a)$	
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$			
After-tax wealth ratio	1.15 (=	1150/1000)			

► Taxing the book value breaks the link between tax liability and investment ability → "use-it-or-lose-it" effect.

	Capital Income Tax		Wealth Tax (on Book Value!)		
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_ia_i$		
	Fredo ($r_f = 0\%$)	Mike (<i>r</i> _m = 20%)	Fredo ($r_f = 0\%$)	Mike (<i>r</i> _m = 20%)	
Wealth	\$1000	\$1000	\$1000	\$1000	
Before-tax Income	0	\$200	0	\$200	
	$ au_{k} = 25\% \left(= rac{50}{200} ight)$		$ au_{a}=2.5\%~(=rac{50}{2000})$		
Tax liability	0	$50 (= 200 \times \tau_k)$	$25 (= 1000 \times \tau_a)$	$\$25 (= 1000 \times \tau_a)$	
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$			
After-tax wealth ratio	1.15 (=	1150/1000)			

- Market value internalizes investment ability, taxing would weaken use-it-or-lose-it effect.

	Capital Income Tax		Wealth Tax (on Book Value!)		
	$a_{i, ext{after-tax}} = a_i + (1 - au_k) r_i a_i$		$a_{i, ext{after-tax}} = (1- au_{a})a_{i} + r_{i}a_{i}$		
	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _{<i>m</i>} = 20%)	Fredo (<i>rf</i> = 0%)	Mike (<i>r</i> _m = 20%)	
Wealth	\$1000	\$1000	\$1000	\$1000	
Before-tax Income	0	\$200	0	\$200	
	$ au_{k} = 25\% \left(= rac{50}{200} ight)$		$ au_{\rm a} = 2.5\% \left(= rac{50}{2000} ight)$		
Tax liability	0	$50 (= 200 \times \tau_k)$	$25 (= 1000 \times \tau_a)$	$\$25 (= 1000 \times \tau_a)$	
After-tax return	0%	$15\% \left(= rac{200-50}{1000} ight)$	$-2.5\% ig(=rac{0-25}{1000}ig)$	$17.5\% \left(= rac{200-25}{1000} ight)$	
After-tax wealth ratio	1.15 (= 1150/1000)		$1.20~(pprox ^{1175}/_{975})$		

- Market value internalizes investment ability, taxing would weaken use-it-or-lose-it effect.

 \rightarrow misallocation & inefficient use of capital.

 \rightarrow misallocation & inefficient use of capital.

Replacing capital income tax with a wealth tax:

 \rightarrow misallocation & inefficient use of capital.

Replacing capital income tax with a wealth tax:

- Positive (+): Efficiency gains
 - Use it or Lose it (Static): Capital is reallocated to more productive agents.

 \rightarrow misallocation & inefficient use of capital.

Replacing capital income tax with a wealth tax:

- Positive (+): Efficiency gains
 - Use it or Lose it (Static): Capital is reallocated to more productive agents.
 - Behavioral savings response (Dynamic): Tax increases return heterogeneity

 $\rightarrow \! Savings$ rates respond \rightarrow further reallocation toward more productive agents.

 \rightarrow misallocation & inefficient use of capital.

Replacing capital income tax with a wealth tax:

- Positive (+): Efficiency gains
 - Use it or Lose it (Static): Capital is reallocated to more productive agents.
 - Behavioral savings response (Dynamic): Tax increases return heterogeneity

 $\rightarrow \! Savings$ rates respond \rightarrow further reallocation toward more productive agents.

Negative (-): Higher wealth inequality

 \rightarrow misallocation & inefficient use of capital.

Replacing capital income tax with a wealth tax:

- Positive (+): Efficiency gains
 - Use it or Lose it (Static): Capital is reallocated to more productive agents.
 - Behavioral savings response (Dynamic): Tax increases return heterogeneity

 $\rightarrow \! Savings$ rates respond \rightarrow further reallocation toward more productive agents.

- Negative (-): Higher wealth inequality
 - But: effect on consumption inequality ambiguous when wage income present.

Quantitative analysis of capital income and wealth taxation:

- ► Lifecycle model with OLG demographics.
- Persistent rate of return heterogeneity.
- Financial frictions: collateral constraints

Quantitative analysis of capital income and wealth taxation:

- ► Lifecycle model with OLG demographics.
- Persistent rate of return heterogeneity.
- Financial frictions: collateral constraints

Model generates:

- 1. Thick Pareto tail & extreme concentration of wealth unlike Aiyagari-style models.
- 2. Very fast wealth growth for super wealthy (1/2 of US billionaires are self made).
- 3. and a host of other features of data on returns, entrepreneurs, etc.

1. Capital income taxes much more distorting than what we believed.

- 1. Capital income taxes much more distorting than what we believed.
- 2. Switch to wealth tax reallocates capital:
 - Reallocation from low-productive to high-productive rich.
 - Hence, higher productivity, output, wages, and welfare.

- 1. Capital income taxes much more distorting than what we believed.
- 2. Switch to wealth tax reallocates capital:
 - Reallocation from low-productive to high-productive rich.
 - Hence, higher productivity, output, wages, and welfare.
- 3. Due to higher wages, most people benefit from switch to wealth tax.
 - Optimal wealth tax delivers both efficiency and distributional gains.
 - No equity-efficiency trade-off.

- 1. Capital income taxes much more distorting than what we believed.
- 2. Switch to wealth tax reallocates capital:
 - Reallocation from low-productive to high-productive rich.
 - Hence, higher productivity, output, wages, and welfare.
- 3. Due to higher wages, most people benefit from switch to wealth tax.
 - Optimal wealth tax delivers both efficiency and distributional gains.
 - No equity-efficiency trade-off.
- 4. Gains from optimal wealth tax come from reallocation, not capital accumulation.
 - Hence, gains remain even after taking the transition into account.

Outline

1. Model

- 2. Parameterization
- 3. Quantitative results
 - Tax reform
 - Optimal taxation
- 4. Robustness
- 5. Conclusions

Outline

1. Model

- 2. Parameterization
- 3. Quantitative results
 - Tax reform
 - Optimal taxation
- 4. Robustness
- 5. Conclusions

Disclaimer: Focus on understanding new mechanisms. Nothing to say about implementation.

- **OLG demographic structure**, with retirement, and mortality risk
- ► Warm glow bequest motive, inheritance goes to (newborn) offspring.

- ► OLG demographic structure, with retirement, and mortality risk
- Warm glow bequest motive, inheritance goes to (newborn) offspring.

Individuals:

- ► Have preferences over consumption, leisure and bequests
- Make three decisions:

consumption-savings || labor supply || entrepreneurial activity

► Two exogenous characteristics:

 y_{ih} (labor market productivity) $\| z_{ih}$ (entrepreneurial productivity)

Entrepreneurial Productivity *z*_{*ih*}: Key Source of Heterogeneity

Idiosyncratic wage risk :

Modeled in a rich way, but does not turn out to be critical. Details

Entrepreneurial Productivity *z*_{*ih*}: Key Source of Heterogeneity

Idiosyncratic wage risk :

- Modeled in a rich way, but does not turn out to be critical. Details
- Entrepreneurial productivity, z_{ih}, varies
 - 1. across individuals
 - 2. stochastically over the life cycle
 - 3. across generations

Entrepreneurial Productivity *z*_{*ih*}: Key Source of Heterogeneity

Idiosyncratic wage risk :

- Modeled in a rich way, but does not turn out to be critical. Details
- Entrepreneurial productivity, z_{ih}, varies
 - 1. across individuals
 - 2. stochastically over the life cycle
 - 3. across generations
- Individual i produces x_{ih} units of intermediate good i:

$$\mathbf{x}_{ih} = \mathbf{z}_{ih} \mathbf{k}_{ih},$$

using k_{ih} units of capital.

Entrepreneurial Productivity *z_{ih}*: Dynamics

> z_i^p : (permanent) entrepreneurial ability, z_i^p , partially inherited from parent.

Entrepreneurial Productivity *z_{ih}*: Dynamics

- ► z_i^p : (permanent) entrepreneurial ability, z_i^p , partially inherited from parent.
- Entrepreneurial productivity transitions between 3 phases of life: $I_{ih} \in \{H, L, \mathbf{0}\}$:

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih}) = \begin{cases} \left(z_i^p\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = H \qquad \text{where } \lambda > \mathbb{I} \\ z_i^p & \text{if } \mathbb{I}_{ih} = L \\ z_{min} & \text{if } \mathbb{I}_{ih} = \mathbf{0} \end{cases}$$

where λ is degree of superstar productivity.

Transition matrix:
$$\Pi_{z^s} = \begin{bmatrix} 1 - p_1 - p_2 & p_1 & p_2 \\ 0 & 1 - p_2 & p_2 \\ 0 & 0 & 1 \end{bmatrix}$$

- $p_1 = \Pr \{ \text{losing superstar productivity} \}.$
- ▶ $p_2 = \Pr \{ \text{losing all productivity} \} \rightarrow \text{become a passive saver.}$

Entrepreneurial Productivity *z_{ih}*: Dynamics

- ► z_i^p : (permanent) entrepreneurial ability, z_i^p , partially inherited from parent.
- Entrepreneurial productivity transitions between 3 phases of life: $I_{ih} \in \{H, L, \mathbf{0}\}$:

$$z_{ih} = f(z_i^p, \mathbb{I}_{ih}) = \begin{cases} \left(z_i^p\right)^{\lambda} & \text{if } \mathbb{I}_{ih} = H & \text{where } \lambda > 1 \\ z_i^p & \text{if } \mathbb{I}_{ih} = L \\ z_{min} & \text{if } \mathbb{I}_{ih} = \mathbf{0} \end{cases}$$

where λ is degree of superstar productivity.

Transition matrix:
$$\Pi_{z^s} = \begin{bmatrix} 1 - p_1 - p_2 & p_1 & p_2 \\ 0 & 1 - p_2 & p_2 \\ 0 & 0 & 1 \end{bmatrix}$$

- $p_1 = \Pr \{ \text{losing superstar productivity} \}.$
- ▶ $p_2 = \Pr \{ \text{losing all productivity} \} \rightarrow \text{become a passive saver.}$
- Halvorsen, Hubmer, Ozkan, and Salgado (2021): Large fraction of rich household start relatively poor and experience fast growth early in life and in a few years.

Competitive Final Good Producer

Final good production combines efficiency adjusted capital and labor:

 $\mathbf{Y} = \mathbf{Q}^{\alpha} \mathbf{L}^{1-\alpha}$

Efficiency-adjusted capital:

$$\mathbf{Q} = \left(\int (\mathbf{x}_{ih})^{\mu} didh\right)^{1/\mu}, \ \mu < 1$$

Competitive Final Good Producer

Final good production combines efficiency adjusted capital and labor:

 $\mathbf{Y} = \mathbf{Q}^{\alpha} \mathbf{L}^{1-\alpha}$

Efficiency-adjusted capital:

$$\mathbf{Q} = \left(\int (\mathbf{z}_{ih}\mathbf{k}_{ih})^{\mu} didh\right)^{1/\mu}, \ \mu < 1$$

Final good production combines efficiency adjusted capital and labor:

 $\mathbf{Y} = \mathbf{Q}^{\alpha} \mathbf{L}^{1-\alpha}$

Efficiency-adjusted capital:

$$\mathbf{Q} = \left(\int (\mathbf{z}_{ih}\mathbf{k}_{ih})^{\mu} \mathbf{d} i \mathbf{d} h\right)^{1/\mu}, \ \mu < 1$$

• Defines demand curve for individual entrepreneurs

Final good production combines efficiency adjusted capital and labor:

 $\mathbf{Y} = \mathbf{Q}^{\alpha} \mathbf{L}^{1-\alpha}$

Efficiency-adjusted capital:

$$\mathbf{Q} = \left(\int (\mathbf{z}_{ih}\mathbf{k}_{ih})^{\mu} didh\right)^{1/\mu}, \ \mu < 1$$

- Defines demand curve for individual entrepreneurs
- Aggregate labor supply (used by aggregate firm, not to produce x_{ih}):

$$L = \int (y_{ih}\ell_{ih}) didh$$

► Note: All entrepreneurs earn (monopoly) rents in the model.

Bond Market (within period):

- Individuals can lend and borrow (subject to collateral constraints).
- **•** Trade happens after z_{ih} is observed. No default risk.

Bond Market (within period):

- Individuals can lend and borrow (subject to collateral constraints).
- Trade happens after z_{ih} is observed. No default risk.

Entrepreneur's Problem

Without taxes, entrepreneur's capital choice:

$$\pi^{\star}(\boldsymbol{a}, \boldsymbol{z}) = \max_{\boldsymbol{k} \leq \vartheta(\boldsymbol{z}) \cdot \boldsymbol{a}} \left\{ \mathcal{R} \cdot (\boldsymbol{z} \cdot \boldsymbol{k})^{\mu} - (\boldsymbol{r} + \delta) \, \boldsymbol{k} \right\}$$

where borrowing capacity is nondecreasing in ability $\vartheta'(\mathbf{z}) \geq 0$

Bond Market (within period):

- Individuals can lend and borrow (subject to collateral constraints).
- Trade happens after z_{ih} is observed. No default risk.

Entrepreneur's Problem

Without taxes, entrepreneur's capital choice:

$$\pi^{\star}(a, z) = \max_{k \leq \vartheta(z) \cdot a} \left\{ \mathcal{R} \cdot (z \cdot k)^{\mu} - (r + \delta) k \right\}$$

where borrowing capacity is nondecreasing in ability $\vartheta'\left(\mathbf{z}\right)\geq 0$

After-tax wealth:

$$\Pi(a, z; \tau) = \begin{cases} a + [ra + \pi^*(a, z)] \times (1 - \tau_k) \\ a \times (1 - \tau_a) + [ra + \pi^*(a, z)] \end{cases}$$

Individuals:

During working life:

$$(1 + \tau_{\mathbf{c}}) \cdot \mathbf{c}_{ih} + \mathbf{a}'_{ih} = \Pi\left(\mathbf{a}_{ih}, \mathbf{z}_{ih}; \tau\right) + (1 - \tau_{\ell}) \cdot (\mathbf{w}\mathbf{y}_{ih}\ell_{ih}) \qquad \text{and} \quad \mathbf{a}'_{ih} \ge 0$$

During <u>retirement</u> labor income replaced with <u>SS pension</u>

Government budget balances:

- ► **Outlays:** Expenditure (G) + Social Security pensions
- **Revenues:** taxes on consumption (τ_c) , labor income (τ_ℓ) , bequests (τ_b) plus:
 - 1. tax on capital income (τ_k) , or
 - 2. tax on wealth (τ_a) .

Outline

- 1. Model
- 2. Parameterization
- 3. Quantitative results
 - Tax reform
 - Optimal taxation
- 4. Robustness
- 5. Conclusions

► Preferences:

$$u(\boldsymbol{c},\ell) = \frac{\left(\boldsymbol{c}^{\gamma}\ell^{1-\gamma}\right)^{1-\sigma}}{1-\sigma} \qquad \boldsymbol{v}(\boldsymbol{b}) = \chi \frac{\left(\left(1-\tau_{\boldsymbol{b}}\right)\boldsymbol{b} + \underline{\boldsymbol{b}}\right)^{\gamma(1-\sigma)}}{1-\sigma}$$

Technology:

• Capital share $\alpha = 0.4$, curvature $\mu = 0.9$.

► Tax rates in benchmark US economy:

• $\tau_k = 25\%, \tau_\ell = 22.4\%$, and $\tau_c = 7.5\%$ (McDaniel, 2007), $\tau_b = 40\%$

Collateral constraint: ϑ (z̄) = 1 + φ (z̄ − z̄₀), with φ chosen to match business debt plus external funds /GDP ratio of 1.5.

Parameters of entrepreneurial productivity: λ, p₁, p₂, σ_{ε_z}, and ρ_z chosen to match five moments:

	Data	Benchmark	
Top 1% wealth share	0.36	0.36	
Self-made billionaires (fraction)	0.54	0.56	
Pop. share of entrepreneurs at top 1%	0.65	0.68	
Wealth share of entrepreneurs	0.42	0.39	
Intergenerational correlation of avg. return	0.1	0.1	

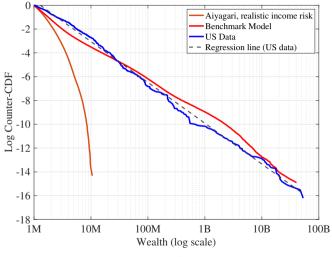
Parameters of entrepreneurial productivity: λ, p₁, p₂, σ_{ε_z}, and ρ_z chosen to match five moments:

	Data	Benchmark	
Top 1% wealth share	0.36	0.36	
Self-made billionaires (fraction)	0.54	0.56	
Pop. share of entrepreneurs at top 1%	0.65	0.68	
Wealth share of entrepreneurs	0.42	0.39	
Intergenerational correlation of avg. return	0.1	0.1	

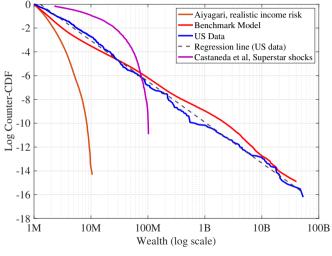
Note also: 53% of individuals earn NO business income (i.e., z_{ih} = 0), and only 7% earn majority of income from business (our definition of "entrepreneur")

Parameters of entrepreneurial productivity: λ, p₁, p₂, σ_{ε_z}, and ρ_z chosen to match five moments:

	Data	Benchmark	Low-Ineq.
			Calibration
Top 1% wealth share	0.36	0.36	0.20
Self-made billionaires (fraction)	0.54	0.56	0.26
Pop. share of entrepreneurs at top 1%	0.65	0.68	0.68
Wealth share of entrepreneurs	0.42	0.39	0.34
Intergenerational correlation of avg. return	0.1	0.1	0.1


Note also: 53% of individuals earn NO business income (i.e., z_{ih} = 0), and only 7% earn majority of income from business (our definition of "entrepreneur")

Pareto Tail of Wealth Distribution: Model vs. Data


Note: Both axes are in natural logs.

Pareto Tail of Wealth Distribution: Model vs. Data

Note: Both axes are in natural logs.

Pareto Tail of Wealth Distribution: Model vs. Data

Note: Both axes are in natural logs.

Performance of the benchmark model: return heterogeneity

Table 1: Distribution of Rates of Return (Untargeted) in the Model and the Data

	Annual Returns			Persisten	t Compone	nt of Re	turns		
	Std dev	P90-P10	Kurtosis	Std dev	P90-P10	Kurtosis	P90	P99	P99.9
Data (Norway)	8.6	14.2	47.8	6.0	7.7	78.4	4.3	11.6*	23.4*
Data (Norway, bus. own.)	-	-	-	4.8	10.9	14.2	10.1	-	-
Data (US, private firms)	17.7	33.8	8.3	-	-	-	-	-	-
Benchmark Model	8.4	17.1	7.6	4.1	9.2	6.1	5.8	13.9	19.7
L-INEQ Calibration	6.7	13.1	9.2	3.8	9.2	4.3	5.6	11.2	15.8

Performance of the benchmark model: return heterogeneity

Table 1: Distribution of Rates of Return (Untargeted) in the Model and the Data

	Annual Returns			Persisten	t Compone	nt of Re	turns		
	Std dev	P90-P10	Kurtosis	Std dev	P90-P10	Kurtosis	P90	P99	P99.9
Data (Norway)	8.6	14.2	47.8	6.0	7.7	78.4	4.3	11.6*	23.4*
Data (Norway, bus. own.)	-	-	-	4.8	10.9	14.2	10.1	-	-
Data (US, private firms)	17.7	33.8	8.3	-	-	-	-	-	-
Benchmark Model	8.4	17.1	7.6	4.1	9.2	6.1	5.8	13.9	19.7
L-INEQ Calibration	6.7	13.1	9.2	3.8	9.2	4.3	5.6	11.2	15.8

- 1. Model
- 2. Parameterization

3. Quantitative results

- Tax reform
- Optimal taxation
- 4. Robustness
- 5. Conclusions

Tax Reform

Start from the benchmark US economy...

RN Tax Reform: Replace τ_k with τ_a so as to keep government revenue constant.

► Note that this implies retiree pensions remain fixed after reform

- Start from the benchmark US economy...
 - **RN** Tax Reform: Replace τ_k with τ_a so as to keep government revenue constant.
 - Note that this implies retiree pensions remain fixed after reform
 - BB Tax reform: Let pensions adjust according to SS formula. Balance the budget.

- Start from the benchmark US economy...
 - **RN** Tax Reform: Replace τ_k with τ_a so as to keep government revenue constant.
 - ► Note that this implies retiree pensions remain fixed after reform
 - **BB** Tax reform: Let pensions adjust according to SS formula. Balance the budget.
- Compare steady states.

	Benchmark	RN Wealth Tax
$ au_k$	25.0%	0.00
$ au_a$	0.00	1.19%
Variable		% Change
К		
Q		
TFP _Q		
TFP		
Y		
W		
С		

	Benchmark	RN Wealth Tax
$ au_{k}$	25.0%	0.00
$ au_{a}$	0.00	1.19%
Variable		% Change
Κ		16.4
Q		22.6
TFPQ		5.3
TFP		2.1
Y		
W		
С		

	Benchmark	RN Wealth Tax			
$ au_{k}$	25.0%	0.00			
$ au_{a}$	0.00	1.19%			
Variable		% Change			
К		16.4			
Q		22.6			
TFPQ		5.3			
TFP		2.1			
Y		9.2			
W		8.0			
С		9.5			

	RN	BB	RN
			(L-INEQ)
Average welfare change:			
\overline{CE}_1	6.8%	4.8%	4.9%
\overline{CE}_2	7.2%	4.3%	4.8%
% with welfare gain	<mark>68%</mark>	94%	64%

 $\overline{\textit{CE}}_1$: % consumption transfer to each newborn to be indifferent, averaged over newborns.

 $\overline{\textit{CE}}_2$: % consumption transfer to all newborns giving same average utility in both economies.

	RN	BB	RN
			(L-INEQ)
Average welfare change:			
\overline{CE}_1	6.8%	4.8%	4.9%
\overline{CE}_2	7.2%	4.3%	4.8%
% with welfare gain	<mark>68%</mark>	94%	64%

 \overline{CE}_1 : % consumption transfer to each newborn to be indifferent, averaged over newborns. \overline{CE}_2 : % consumption transfer to all newborns giving same average utility in both economies.

Key: Tax reform **replaces** τ_k with τ_a . This is \neq from adding wealth taxes.

► Adding wealth taxes reduces welfare by -10% to -14%

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)										
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+						
20	6.7	6.3	6.8	8.5	11.5	13.4						
21-34												
35-49												
50-64												
65+												

Average (consumption equivalent) welfare gain by age-productivity groups:

		Productivity group (Percentile)										
Age	0-40	40-80	80-90	90-99	99-99.9	99.9+						
20	6.7	6.3	6.8	8.5	11.5	13.4						
21-34	6.3	5.5	5.5	6.5	8.5	9.7						
35-49	4.9	3.8	3.3	3.3	3.1	2.8						
50-64	2.2	1.5	1.1	0.9	0.4	-0.2						
65+	-0.2	-0.3	-0.4	-0.4	-0.7	-1.0						

	RN	BB	RN
			(L-INEQ)
Average welfare change:			
\overline{CE}_1	6.8%	4.8%	4.9%
\overline{CE}_2	7.2%	4.3%	4.8%
% with welfare gain	68%	94%	64%

 \overline{CE}_1 : % consumption transfer to each newborn to be indifferent, averaged over newborns. \overline{CE}_2 : % consumption transfer to all newborns giving same average utility in both economies.

- **Key:** Tax reform **replaces** τ_k with τ_a . This is \neq from adding wealth taxes.
 - Adding wealth taxes reduces welfare by -6% to -9%

	RN	BB	RN
			(L-INEQ)
Average welfare change:			
\overline{CE}_1	6.8%	4.8%	4.9%
\overline{CE}_2	7.2%	4.3%	4.8%
% with welfare gain	68%	94%	64%

 \overline{CE}_1 : % consumption transfer to each newborn to be indifferent, averaged over newborns. \overline{CE}_2 : % consumption transfer to all newborns giving same average utility in both economies.

- **Key:** Tax reform **replaces** τ_k with τ_a . This is \neq from adding wealth taxes.
 - Adding wealth taxes reduces welfare by -6% to -9%

Optimal taxation

Three experiments:

Gov't maximizes expected lifetime utility of newborns... by choosing

optimal labor income tax rate and:

1. flat-rate wealth tax.

Three experiments:

Gov't maximizes expected lifetime utility of newborns... by choosing

optimal labor income tax rate and:

- 1. flat-rate wealth tax.
- 2. progressive wealth tax: no tax below exemption level.

Three experiments:

Gov't maximizes expected lifetime utility of newborns... by choosing

optimal labor income tax rate and:

- 1. flat-rate wealth tax.
- 2. progressive wealth tax: no tax below exemption level.
- 3. capital income tax.

	Benchmark US Economy	RN Reform	OWT
Tax Rates			
$ au_{k}$	25.0	_	—
$ au_a$	_	1.19	3.03
$ au_\ell$	22.4	22.4	15.4
$\Delta Welfare$			
\overline{CE}_1	_	6.8	9.0
$\overline{\textit{CE}}_2$	_	7.2	8.7

Note: Percentage changes are computed with respect to the US benchmark.

• Most of the gain from optimal wealth tax is from replacing τ_k with τ_a .

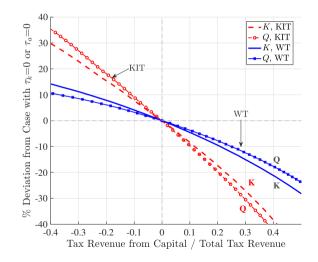
	Benchmark US Economy	RN Reform	OWT	OWT L-INEQ
Tax Rates				
$ au_{k}$	25.0	_	_	—
$ au_a$	_	1.19	3.03	2.54
$ au_\ell$	22.4	22.4	15.4	18.1
$\Delta Welfare$				
$\overline{\textit{CE}}_1$	_	6.8	9.0	6.0
$\overline{\textit{CE}}_2$	_	7.2	8.7	5.2

Note: Percentage changes are computed with respect to the US benchmark.

• Most of the gain from optimal wealth tax is from replacing τ_k with τ_a .

	Benchmark US Economy	RN Reform	OWT	OWT OWT L-INEQ Opt. $\underline{a}_{ex} = 0.3\overline{y}$		
Tax Rates						
$ au_{k}$	25.0	_	—	—	_	
$ au_a$	_	1.19	3.03	2.54	3.80	
$ au_\ell$	22.4	22.4	15.4	18.1	14.4	
$\Delta Welfare$						
$\overline{\textit{CE}}_1$	_	6.8	9.0	6.0	9.1	
$\overline{\textit{CE}}_2$	_	7.2	8.7	5.2	8.8	

Note: Percentage changes are computed with respect to the US benchmark.


- Most of the gain from optimal wealth tax is from replacing τ_k with τ_a .
- Optimal threshold is 30% of av. income and exempts 32% of population.

	Benchmark US Economy	RN Reform	OWT	OWT OWT L-INEQ Opt. $\underline{a}_{ex} = 0.3\overline{y}$				ΟΚΙΤ
Tax Rates								
$ au_{k}$	25.0	_	—	_	_	-13.6%		
$ au_{a}$	_	1.19	3.03	2.54	3.80	—		
$ au_\ell$	22.4	22.4	15.4	18.1	14.4	31.2		
$\Delta Welfare$								
$\overline{\textit{CE}}_1$	_	6.8	9.0	6.0	9.1	4.2		
$\overline{\textit{CE}}_2$	_	7.2	8.7	5.2	8.8	5.1		

Note: Percentage changes are computed with respect to the US benchmark.

- Most of the gain from optimal wealth tax is from replacing τ_k with τ_a .
- Optimal threshold is 30% of av. income and exempts 32% of population.

Figure 1: How K and Q Vary with Revenue Raised from Taxing Capital

% change from US benchmark	ΔK	ΔQ	ΔTFP_Q	ΔL	ΔY	Δw	Δw (net)
Tax reform	16.4	22.6	5.3	1.2	9.2	8.0	8.0
Optimal $ au_a$							
Opt. τ_a + Threshold							
Optimal τ_k							

	ΔK	ΔQ	ΔTFP_Q	ΔL	$\Delta \mathbf{Y}$	Δw	Δw
% change from US benchmark							(net)
Tax reform	16.4	22.6	5.3	1.2	9.2	8.0	8.0
Optimal $ au_a$	2.6	10.5	7.7	3.3	6.1	2.8	12.0
Opt. τ_a + Threshold							
Optimal $ au_k$							

	ΔK	ΔQ	ΔTFP_Q	ΔL	$\Delta \mathbf{Y}$	$\Delta \mathbf{W}$	$\Delta \mathbf{W}$
% change from US benchmark							(net)
Tax reform	16.4	22.6	5.3	1.2	9.2	8.0	8.0
Optimal τ_a	2.6	10.5	7.7	3.3	6.1	2.8	12.0
Opt. τ_a + Threshold	-3.0	5.4	8.7	3.3	4.1	0.8	11.2
Optimal $ au_k$							

% change from US benchmark	ΔK	ΔQ	ΔTFP_Q	ΔL	ΔY	Δw	Δw (net)
Tax reform	16.4	22.6	5.3	1.2	9.2	8.0	8.0
Optimal $ au_a$	2.6	10.5	7.7	3.3	6.1	2.8	12.0
Opt. τ_a + Threshold	-3.0	5.4	8.7	3.3	4.1	0.8	11.2
Optimal τ_k	<mark>38.6</mark>	46.1	5.4	-1.0	15.7	16.8	3.6

- Welfare gain comes from changes in consumption (c) and $leisure(\ell)$.
- ► How much comes from changes in the **level** vs **distribution** of *c* and *l*?

- Welfare gain comes from changes in consumption (c) and $leisure(\ell)$.
- ▶ How much comes from changes in the **level** vs **distribution** of *c* and *l*?

	Tax Reform	Opt. τ_a	Opt. τ_a +Threshold	Opt. τ_k
\textit{CE}_2 (NB)	7.2	8.7	8.8	5.1
Level $(\overline{c}, \overline{\ell})$	8.9			
Dist. (c, ℓ)	-1.5			

- Welfare gain comes from changes in consumption (c) and $leisure(\ell)$.
- ▶ How much comes from changes in the **level** vs **distribution** of *c* and *l*?

	Tax Reform	Opt. τ_a	Opt. τ_a +Threshold	Opt. τ_k
\textit{CE}_2 (NB)	7.2	8.7	8.8	5.1
Level $(\overline{c}, \overline{\ell})$	8.9	5.9		
Dist. (<i>c</i> , ℓ)	-1.5	2.6		

- Welfare gain comes from changes in consumption (c) and $leisure(\ell)$.
- ▶ How much comes from changes in the **level** vs **distribution** of *c* and *l*?

	Tax Reform	Opt. τ_a	Opt. τ_a +Threshold	Opt. τ_k
\textit{CE}_2 (NB)	7.2	8.7	8.8	5.1
Level $(\overline{c},\overline{\ell})$	8.9	5.9	4.3	
Dist. (<i>c</i> , ℓ)	-1.5	2.6	4.3	

- Welfare gain comes from changes in consumption (c) and $leisure(\ell)$.
- ▶ How much comes from changes in the **level** vs **distribution** of *c* and *l*?

	Tax Reform	Opt. τ_a	Opt. τ_a +Threshold	Opt. τ_k
<i>CE</i> ₂ (NB)	7.2	8.7	8.8	5.1
Level $(\overline{c},\overline{\ell})$	8.9	5.9	4.3	14.7
Dist. (<i>c</i> , ℓ)	-1.5	2.6	4.3	-8.3

Optimal taxes with transition

- Fix opt. tax level (τ_a or τ_k) and solve transition to new steady state
- Use labor income tax (τ_{ℓ}) to finance debt from deficits during transition

- Fix opt. tax level (τ_a or τ_k) and solve transition to new steady state
- Use labor income tax (τ_ℓ) to finance debt from deficits during transition

	$ au_{a}$ Transition	$ au_{m k}$ Transition
$\overline{\textit{CE}}_2$ (newborn)	6.0 (8.7)	
$\overline{\textit{CE}}_2$ (all)	3.5 (4.3)	

Dbn. of Welfare Gains

- Fix opt. tax level (τ_a or τ_k) and solve transition to new steady state
- Use labor income tax (τ_ℓ) to finance debt from deficits during transition

	$ au_{a}$ Transition	$ au_{m k}$ Transition
$\overline{\textit{CE}}_2$ (newborn)	6.0 (8.7)	-8.4 (5.1)
$\overline{\textit{CE}}_2$ (all)	3.5 (4.3)	-6.1 (4.5)

Dbn. of Welfare Gains

- Fix opt. tax level (τ_a or τ_k) and solve transition to new steady state
- Use labor income tax (τ_ℓ) to finance debt from deficits during transition

	$ au_{a}$ Transition	$ au_{m k}$ Transition
$\overline{\textit{CE}}_2$ (newborn)	6.0 (8.7)	-8.4 (5.1)
$\overline{\textit{CE}}_2$ (all)	3.5 (4.3)	-6.1 (4.5)

- Capital income taxes $(\tau_{\mathbf{k}})$: Gains turned to large losses with transition
- Wealth taxes (τ_a): Large gains achieved through reallocation not accumulation

Outline

- 1. Model
- 2. Parameterization
- 3. Quantitative Results
 - Tax reform
 - Optimal taxation

4. Robustness

5. Conclusions

Robustness

- Pure rents: no heterogeneity in entrepreneurial productivity.
- Alternative modeling of financial frictions
 - No collateral constraints. Unlimited borrowing subject to a credit spread.
 - Introducing public firms with increased credit access.
 - Increased credit access for all, constant ϑ,...
- ► A model with a corporate sector
- ▶ Reconcile capital income tax results with Conesa, Kitao, and Krueger (AER, 2009)
- Nonlinear capital income taxes
- Other Robustness and Extensions
 - Higher mark-up ($\mu = 0.8$)
 - Eliminate stochastic variation over lifecycle $(z_{ih} = \overline{z}_i)$
 - Everybody starts life in middle lane ($z_{i0} = \overline{z}_i$ for all *i*) but can move up to fast lane

	Baseline	Pure rents	Credit S	Spread	Public	Corp.	Conesa et al	Non-line	ar OKIT
	OWT	model	10.1%	6%	- Firms	Sector	version	$y_{after-tax} = (1)$	$(- au_k) y^{1-\eta}$
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$ au_a$	3.03	1.40	2.33	2.46	2.76	3.85			_
$ au_{\ell}$	15.4	27.0	13.6	15.5	17.6	12.8	15.0	15.0 22.4 (fixed)	
τ_k	-	-	_	—	_		42.3	$(0.27, -0.022) \ _{(au_k, \eta)}$	$(-0.2, 0.008) \atop _{(au_k, \eta)}$
					Change	in Welfaı	re (%)		
\overline{CE}_1	9.0	-1.7	6.1	4.3	5.9	9.5	1.6	0.9	4.2
$\overline{\textit{CE}}_2$	8.7	-1.4	5.6	3.5	4.8	8.8	1.4 0.8		5.4

	Looser	Constant ϑ	Higher	Constant	No Start	Add $ au_a$ to B		Benchmark	
	Constraints		Markups	Productivity	in Fast Lane	2% We	alth Tax	OWT W	ealth Tax
	debt/GDP = 2.5	$\vartheta\left(z\right)=\overline{\vartheta}$	$\mu = 0.8$	$z_{ih} = \overline{z}_i$	$z_{ih} = \overline{z}_i$	$ au_\ell$ fixed	Adjust $ au_\ell$	$ au_\ell$ fixed	Adjust $ au_\ell$
	(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)
$ au_{a}$	2.34	3.66	2.45	2.16	2.8	2.00		3.03	
$ au_\ell$	19.5	12.4	18.0	19.4	16.1	22.4 14.9		22.4	12.0
				Change in	Welfare (%	.)			
\overline{CE}_1	4.4	11.8	8.2	6.0	8.5	-8.3	0.9	-11.9	0.3
$\overline{\textit{CE}}_2$	4.2	11.2	7.6	5.5	8.2	-9.9 0.0		-14.2	-1.0

- Many countries currently have or have had wealth taxes:
 - France, Spain, Norway, Switzerland, Italy, Denmark, Germany, Finland, Sweden, Colombia, among others.
- However, the rationale for wealth taxes are often vague:
 - fairness, reducing inequality, etc.
 - and not studied formally
- Here, we are proposing a case for wealth taxes based on efficiency (and distributional benefits) and quantitatively evaluating its impact.

Tax reform from τ_k **to** τ_a **:** Substantial welfare gains

- **Reallocates capital:** less productive wealthy \rightarrow more productive agents
- Gives the right incentives to the right people to save
- Increases output, consumption, and wages

Optimal taxes: Welfare gain substantially larger under wealth taxes

- Capital income taxes (τ_k) : smaller gains that go away with transition
- Wealth taxes (τ_a) : <u>large</u> gains act through <u>reallocation not accumulation</u>

Thanks!

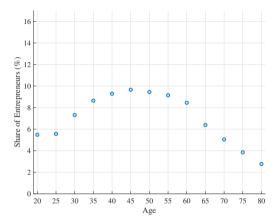
Labor Market Productivity y_{ih}

Labor market efficiency of household i at age h is

$$\log y_{ih} = \underbrace{\kappa_h}_{\text{life cycle}} + \underbrace{\theta_i}_{\text{permanent}} + \underbrace{\eta_{ih}}_{\text{AR(1)}}$$

• Permanent component θ_i is <u>imperfectly inherited</u> from parents:

$$\theta_{i}^{child} = \rho_{\theta} \theta_{i}^{parent} + \varepsilon_{\theta}$$



Entrepreneurship in the Model

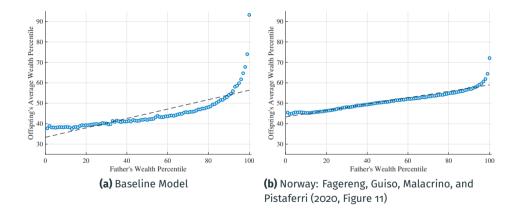
- Not all individuals are active entrepreneurs:
 - Only 47% of working-age population have positive productivity.
- ▶ 7% of of individuals earn more than half of their income from their business:
 - These entrepreneurs account for 68% (39%) of the top 1% (10%) of wealth holders
 - They hold 40% of aggregate wealth (and 50% within top 1%)
 - Most of them are 35-64 years old (in the model)
- ► These are in line with SCF:

Pass-through business owners are ~12% of households, account for 46% of wealth and constitute 70% of top 1% wealth holders.

Fraction of Entrepreneurs over the Life Cycle, Benchmark Model

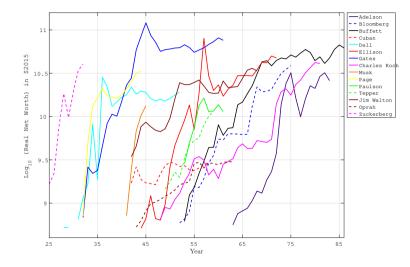
Notes: The figure plots the fraction of entrepreneurs over the life cycle for our baseline economy. All numbers are in percentage points. An entrepreneur is defined as someone who earns more than 50% of their income from their business.

Entrepreneurship over lifecycle is hump-shaped as documented in the data (see, e.g., Kelley, Singer, and Herrington (2011); Liang, Wang, and Lazear JPE, 2018). Inequality in the model


Concentration of Capital Income and Wealth in the Model

Top x% of Wealth Dbn.	Wealth Share (%)	Capital Income Share (%)	Top x% of Capital Income Dbn.	Capital Income Share (%)
0.1	22.3	32.0	0.1	34.3
0.5	30.5	43.0	0.5	45.7
1	35.1	48.2	1	51.9
10	64.9	73.1	10	78.9
50	96.4	97.0	50	98.1

Notes: The table reports wealth and capital income shares for individuals at the top of the wealth distribution (first three columns) and at the top of the capital income distribution (last two columns). All numbers are in percentage points.


- The top 0.1% share by capital income varies between 30% and 41% since 2000 according to Saez and Zucman (QJE, fig 3).
- Smith, Zidar, Zwick (2021, fig A5) report shares sorted by individual components of capital income and the top 1% share for interest, dividend, and capital gains income are all above 60% since 2000

Intergenerational Rank Correlation of Wealth

Notes: The figures show rank-rank plots for the wealth distribution of parents and children.

Evolution of Net Worth Among Forbes 400

	Optimal Wealth Tax					Optimal Capital Income Tax							
	Distribution of Welfare Gains and Losses					Distribution of Welfare Gains and Losses							
	Ability Groups (\overline{z}_i Percentiles)						Abil	ity Group	s (īz _i Perc	entiles)			
	0-40	40-80	80-90	90-99	99-99.9	99.9+	0-40	40-80	80-90	90-99	99-99.9	99.9+	
20	9.4	8.3	8.3	10.1	13.9	16.3	3.4	3.8	5.1	7.5	11.4	13.8	
21-34	8.7	6.8	5.8	6.4	8.0	8.6	3.3	3.6	4.7	7.0	11.2	13.9	
35-49	6.3	4.1	2.4	1.6	-0.4	-2.3	2.9	2.8	3.5	4.8	7.1	8.7	
50-64	2.5	1.0	-0.1	-1.2	-3.4	-5.2	1.6	1.5	1.9	2.7	3.8	4.6	
65+	-0.5	-0.9	-1.3	-1.9	-3.1	-4.3	0.1	0.2	0.4	0.9	1.6	1.9	

Back to Optimal Taxes

			Optimal	Wealth	Тах			Opti	mal Cap	ital Inco	me Tax		
	Optimal Wealth Tax Distribution of Welfare Gains and Losses Ability Groups (\overline{z}_i Percentiles) 0-40 40-80 80-90 90-99 99-99.9 99.9+ 5.4 4.9 5.6 8.4 13.5 16.7 4.8 3.8 3.9 6.0 10.0 12.1					es	Distribution of Welfare Gains and Losses						
	0-40 40-80 80-90 90-99 99-99.9 99.9+						Ability Groups (īz _i Percentiles)						
	0-40	40-80	80-90	90-99	99-99.9	99.9+	0-40	40-80	80-90	90-99	99-99.9	99.9+	
20	5.4	4.9	5.6	8.4	13.5	16.7	-8.8	-7.5	-4.8	0.2	8.7	13.8	
21-34	4.8	3.8	3.9	6.0	10.0	12.1	-8.2	-5.9	-1.9	5.7	19.8	30.2	
35-49	2.9	1.7	1.1	1.5	1.6	1.0	-6.3	-3.9	0.0	6.5	18.5	27.1	
50-64	0.5	-0.3	-0.8	-1.1	-2.2	-3.4	-3.1	-1.3	1.3	5.2	12.2	17.0	
65+	-0.7	-0.9	-1.1	-1.4	-2.5	-3.7	0.6	1.2	2.2	4.0	7.0	9.1	

Back to Transitional Analysis

	U.S. Data	Gaussian	GS benchmark		
Parametrizatior	1:	$\rho = 0.985, \sigma^2 = 0.0234$	Rich process		
Gini	0.85	0.58	0.66		
Top 0.1%	14.8%	1.1%	2.2%		
Frac > \$10M	0.4-0.5%	≈ 0	0.02%		
Тор 1%	35.5%	7.0%	9.2%		
Top 10%	75.0%	37.9%	41.6%		
Top 20%	87.0%	48.2%	52.8%		