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APPENDIX A: DERIVATIONS AND PROOFS

A.1. Kalman Filtering Equations

FOR THE PROBLEM AT HAND, (3) and (4) can be manipulated to obtain some
simple expressions. First, (3) simplifies to

β̂i
t − β̂i

t−1 = (At/Xt)ξ̂
i
t#(28)

ẑi
t − ρẑi

t−1 = (Bt/Xt)ξ̂
i
t#(29)

where At ≡ tσ2
β#t|t−1 + σβz#t|t−1, Bt ≡ tσβz#t|t−1 + σ2

z#t|t−1, and Xt ≡ vart−1(yi
t ) =

Att +Bt . Notice that At/Xt and Bt/Xt measure the fraction of the (one-step-
ahead) forecast variance that is due to the slope uncertainty and the persistent
shock, respectively. Thus, a given ξ̂it is split according to the perceived share of
variance attributed to each component. Second, (4) reduces to

σ2
β#t+1|t = σ2

β#t|t−1 − A2
t

Xt

#(30)

σ2
z#t+1|t = ρ2

[
σ2

z#t|t−1 − B2
t

Xt

]
+ σ2

η'(31)

As shown by Guvenen (2007), an important feature of Bayesian learning in
this framework is that beliefs about βi change nonmonotonically over the life
cycle, owing to the inverse U-shape pattern followed by A2/X . Consequently,
the uncertainty regarding βi can be very slow to resolve. If, instead, the prior
uncertainty were to resolve quickly, consumption behavior after the first few
years would not be informative about the prior uncertainty faced by individuals
(σ̂2

β|0).

A.2. Proofs of Propositions 1 and 2

We begin by establishing the following lemma that comes in handy in the
proofs that follow.

LEMMA A.1: Assume σβ > 0. Then ∂Πt/∂λ> 0.
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PROOF: First recall that Πt = Φt(At/Xt) + Ψt(Bt/Xt), where it can be
shown (through straightforward but tedious algebra) that

Φ(t;T# r)≡
[

γ

(1 − γ) + t − (T + 1)γT−t+1

(1 − γT−t+1)

]

and

Ψ (t;T#ρ# r)≡ 1 − γ
1 − γρ

[
(1 − (γρ)T−t+1)

(1 − γT−t+1)

]
'

The dependence ofΠt on λ comes through At#Bt , and Xt , which all contain
elements of Pt+1|t , which in turn depend on λ. Thus, to establish ∂Πt/∂λ > 0,
we first iterate on the recursions for updating the posterior covariance ma-
trix (equation (4)). Specifically, start at t = 0: σ2

β#1|0 = λ2σ2
β, σ2

z#1|0 = σ2
η, and

σβz#1|0 = 0. Then we can find A1 = λ2σ2
β, B1 = σ2

η, and X1 = λ2σ2
β + σ2

η. Plug-
ging these expressions into (30) and (31), we obtain

σ2
β#2|1 =

λ2σ2
βσ

2
η

λ2σ2
β + σ2

η

#

σ2
z#2|1 = ρ2 λ2σ2

βσ
2
η

λ2σ2
β + σ2

η

+ σ2
η#

and

σ2
βz#2|1 = ρ

λ2σ2
βσ

2
η

λ2σ2
β + σ2

η

'

After a few iterations like this, the following recursive formulas emerge for the
variances and covariances:

σ2
β#t+1|t =Kt#(32)

σ2
z#t+1|t = t2ρ2Kt + σ2

η#(33)

σβz#t+1|t = −tρKt#(34)

where Kt ≡ Θσ2
η

Θ(
∑t

s=0(s−(s−1)ρ)2−1)+σ2
η

and Θ≡ λ2σ2
βσ

2
η

λ2σ2
β+σ2

η
.

Now, first, it is straightforward to show that Πt(λ = 0) > 0. To see this, ob-
serve that if λ = 0, then Θ = 0 and Kt = 0 for all t. So, σ2

β#t|t−1 = σβz#t|t−1 = 0
and σ2

z#t|t−1 = σ2
η. It follows that At = 0, Bt = σ2

η, and Xt = σ2
η. Plugging in these

values shows that Πt =Ψ (t;T# r#ρ), which is always positive. Second, to show
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that ∂Πt
∂λ

> 0 , we need to calculate the derivatives of At/Xt and Bt/Xt with
respect to λ. First, we have

∂Θ

∂λ
=

2λ3σ2
β(σ

2
z )

2

(λ2σ2
β + σ2

z )
2 > 0#

∂Kt

∂λ
=

∂Θ

∂λ
(σ2

η)
2

(

Θ

(
t∑

s=0

(s − (s − 1)ρ)2 − ρ2

)

+ σ2
η

)2 > 0'

Using the chain rule and ∂Kt
∂λ

> 0 for all t, we find

∂(At/Xt)

∂λ
=

(
t − ρ(t − 1)

)
Kt−1

∂Kt−1

∂λ
σ2
η > 0#

∂(Bt/Xt)

∂λ
= −t

(
t − ρ(t − 1)

)
Kt−1

∂Kt−1

∂λ
σ2
η < 0'

We can rewrite the derivative of Πt with respect to λ as

∂Πt

∂λ
=

[
Φt

∂(At/Xt)

∂λ
+Ψt

∂(Bt/Xt)

∂λ

]
(35)

= [Φt − tΨt]
(
t − ρ(t − 1)

)
Kt−1

∂Kt−1

∂λ
σ2
η'(36)

Note that all terms outside of the square brackets are positive. Thus, ∂Πt
∂λ

> 0
if and only if [Φt − tΨt]> 0. To prove the latter, we proceed in two steps. First,
the expression we are interested in is

Φt − tΨt =
[

γ

(1 − γ) + t − (T + 1)γT−t+1

(1 − γT−t+1)

]
(37)

− t

[
1 − γ

1 − γT−t+1

1 − (γρ)T−t+1

1 − γρ

]
'

It is straightforward to see that ∂(Φt − tΨt)/∂ρ< 0, since ρ only appears in
the second set of brackets (i.e., Ψt), which clearly becomes more negative as
ρ rises.33 Therefore, it is sufficient to prove that Φt − tΨt > 0 when ρ= 1 and
the same will hold for all values of ρ< 1. This is how we shall proceed. Let the

33To see this, note that the ratio 1−(γρ)T−t+1

1−γρ can be expanded as 1+ (γρ)+ (γρ)2 +· · ·+ (γρ)T−t ,
which is clearly increasing in ρ.
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remaining planning horizon of an individual be denoted with τ ≡ T − t + 1.
When ρ= 1, we have Ψt = 1 and the expression simplifies to

Φt − tΨt =
[

γ

(1 − γ) + t − (T + 1)γT−t+1

(1 − γT−t+1)

]
− t(38)

= γ

(1 − γ) − τγτ

(1 − γτ) '

For τ = 1, the expression equals zero. All we need to show is that the deriva-
tive34 of the second term with respect to τ is negative, which will then establish
that Φt − tΨt > 0 for all τ > 1. This is easy to do,

d

dτ

(
τγτ

(1 − γτ)

)
= γτ(1 + τ logγ− γτ)

(1 − γτ)2 < 0

⇔ 1 + τ logγ− γτ < 0 ⇔ γτ < eγ
τ−1#

which is satisfied for all τ > 1 as long as γ < 1 (i.e., r > 0). Since the second
term in (38) is decreasing with the horizon, this establishes thatΦ− tΨ > 0 for
all τ > 1 (alternatively t < T ). Q.E.D.

PROOF OF PROPOSITION 1: (i) Rewrite (13) as

0Ci
t =Πt ×

(
Y i

t − Et−1
(
Y i

t

))
=Πt ×

(
0Y i

t +Y i
t−1 − Et−1

(
Y i

t

))

=Πt ×0Y i
t +Πt ×

(
βi(t − 1)+ zi

t−1 −
(
β̂i

t−1t + ẑi
t−1

))

=Πt ×0Y i
t +Πt ×

((
βi − β̂i

t−1

)
t +

(
zi
t−1 − ẑi

t−1

)
−βi

)
'

Taking the expectations of both sides with respect to the history up to time
t − 1 (of prior beliefs and income realizations, {Y i

1#Y
i
2# ' ' ' #Y

i
t−1# β̂

i
1|0}) condi-

tional on βi#0Y i
t ,

E
(
0Ci

t |βi#0Y i
t

)
=Πt ×

(
0Y i

t + E
(
βi − β̂i

t−1|βi#0Y i
t

)
× t

)

+Πt × E
(
zi
t−1 − ẑi

t−1|βi#0Y i
t

)
−Πt ×βi#

E
(
0Ci

t |βi#0Y i
t

)
=Πt ×0Y i

t +Πt ×
(
βi −βi

)
× t

+Πt × (0)−Πt ×βi'

On the last line, we made use of two facts, E(zi
t−1 − ẑi

t−1|βi#0Y i
t ) = 0 and

E(β̂i
t−1|βi#0Y i

t )= βi, which yield

E
(
0Ci

t |βi#0Y i
t

)
=Πt ×0Y i

t −Πt ×βi'(39)

34Here we are treating τ as a continuous variable, when in fact time is discrete. It is easy to see
that this is an innocuous assumption in this context.
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Therefore, controlling for income growth, on average, consumption growth
is decreasing in βi. Furthermore, since ∂E(Y i

t−1 −Y i
1|βi)/∂βi > 0, consumption

growth is also decreasing in past income growth.
(ii) We need to establish three results. First the negative dependence proved

above holds even when λ= 0, that is, when the individual has full information
about his/her βi. Second, the strength of consumption’s response to past in-
come growth becomes stronger (i.e., becomes more negative) as λ rises. From
the expression for 0C

i

t given in (39), this is equivalent to showing ∂Πt/∂λ> 0,
which is now proved in Lemma 1. Q.E.D.

PROOF OF LEMMA 1: From the solution of the model, we know that con-
sumption equals the annuity value of the physical wealth and expected lifetime
discounted labor income:

Ct = ϕt

[
1
γ
At +

T−t∑

s=0

γsEt(Yt+s)

]

'(40)

Taking the expectation of the income process, Y i
t = αi + βit + zi

t , we find
Et(Y i

t+s)= αi + β̂i
t(t + s)+ ρsẑi

t . Plugging (6) into (40) yields

Ci
t = ϕt

[
1
γ
Ai

t +
T−t∑

s=0

γs
(
αi + β̂i

t(t + s)+ ρsẑi
t

)
]

(41)

= ϕt

[
1
γ
Ai

t +
(
αi + β̂i

t t + ẑi
t︸ ︷︷ ︸

Yi
t

)
+

T−t∑

s=1

γs
(
αi + β̂i

t(t + s)+ ρsẑi
t

)
]

(42)

⇒ Ci
t = ϕt

(
ωi

t
Cash on hand

)
+ γΦ(t + 1;T# r)β̂i

t(43)

+ γρΨ (t + 1;T# r#ρ)ẑi
t#

which is equation (15) in Lemma 1. Q.E.D.

A.3. Partial Insurance

Following the same steps as in the proof of Lemma 1 above and replacing
Yt with Y disp

t yields the following expression for consumption growth in the
presence of partial insurance:

0Ct = ξ̂t
{
At

Xt

[
Φ(t;T# r)− tϕtθ

]
+ Bt

Xt

[
Ψ (t;T# r)−ϕtθ

]}
'
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This expression can be further simplified by rearranging terms and recogniz-
ing that Att +Bt ≡Xt . We get

0Ct = (Πt −ϕtθ)× ξ̂t '

A.4. Likelihood Approach versus Quadratic Objective: An Equivalence

Here we establish the asymptotic equivalence between the “likelihood ra-
tio (LR) approach” to indirect inference employed in our estimation and the
quadratic objective—also called the Wald approach—that is often used in the
literature. We prove the equivalence for a stylized case for clarity, although
it will become clear that the proof can easily be extended to allow more gen-
eral structural models (with a vector of exogenous variables, Xt , as well as
more lags and leads of variable Y ). Now, consider the structural (i.e., “true”)
model

Yt = f (Yt−1#β)+ ϵt#

where ϵt ∼ i.i.d. N (0#σ2), σ2 is known, and Y0 is given. Consider the auxiliary
model Yt = γ0 +γ1Yt−1 +ηt , ηt ∼ i.i.d. N (0#1). The auxiliary-model likelihood
is −∑T

t=1(Yt − γ0 − γ1Yt−1)2. Define

ĥi(β)≡
(
γ̂0#i(β)# γ̂1#i(β)

)
= arg min

γ0#γ1

T∑

t=1

(
Y i

t (β)− γ0 − γ1Y
i
t−1(β)

)2
#

where i denotes the ith simulated data set, given β. Now define

ĥM(β)≡ arg min
γ0#γ1

M∑

i=1

T∑

t=1

(
Y i

t (β)− γ0 − γ1Y
i
t−1(β)

)2

as M → ∞ (holding T fixed), ĥM(β)→ h(β), where

h(β) ≡ arg min
γ0#γ1

E
T∑

t=1

(
Yt(β)− γ0 − γ1Yt−1(β)

)2
'

The approach in this paper is (assuming M is large) to calculate

β̂T = min
β

T∑

t=1

(
Yt − γ0(β)− γ1(β)Yt−1

)2
#
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where {Yt}Tt=0 is the observed data. The first-order condition is

0 =
∑

t

(
Yt − γ0(β)− γ1(β)Yt−1

)
γ′

0(β)(44)

+
∑

t

(
Yt − γ0(β)− γ1(β)Yt−1

)
γ′

1(β)Yt−1

= −γ′
0(β)

∑
Yt + γ0(β)γ

′
0(β)T + γ1(β)γ

′
0(β)

∑
Yt−1

− γ′
1(β)

∑
YtYt−1 + γ0(β)γ

′
1(β)

∑
Yt−1 + γ1(β)γ

′
1(β)

∑
Y 2

t−1#

where γ′
j(β) is the derivative of γj , j = 0#1. Now, as an alternative, consider

minimizing the quadratic form
[
γ0(β)− γ̂0

γ1(β)− γ̂1

]′ [
a11 a12

a21 a22

][
γ0(β)− γ̂0

γ1(β)− γ̂1

]
#

where γ̂T ≡ arg minγ0#γ1

∑T
t=1(Yt − γ0 − γ1Yt−1)2. The first-order condition

(F.O.C.) with respect to β is

a11
(
γ0(β)− γ̂0

)
γ′

0(β)+ a12
(
γ0(β)− γ̂0

)
γ′

1(β)(45)

+ a12
(
γ1(β)− γ̂1

)
γ′

0(β)+ a22
(
γ1(β)− γ̂1

)
γ′

1(β)

= (−a11γ̂0 − a12γ̂1)γ
′
0(β)− (a12γ̂0 + a22γ̂1)γ

′
1(β)+ a11γ0(β)γ

′
0(β)

+ a12γ0(β)γ
′
1(β)+ a12γ

′
0(β)γ1(β)+ a22γ1(β)γ

′
1(β)

= 0'

We want to make (45) look like condition (44). To do so, first set

a11 = T# a12 =
∑

Yt−1# a22 =
∑

Y 2
t−1'

Then the last four terms in (45) match four of the six terms in (44). But what
about the remaining two terms in each equation? One can show that these
terms match up asymptotically, as the observed sample size T grows large. To
see this,

plim
[
γ′

0(β̂T )

(∑
Yt

T
− T γ̂0(β̂T )

T
−

(∑
Yt−1

T

)
γ̂1

)]

= γ′
0(β0)

(
EYt − γ0(β0)− (EYt−1)γ1(β0)

)
︸ ︷︷ ︸

=0

= γ′
0(β0)× 0 = 0#
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where β0 is the “true” value of β (i.e., plim β̂T = β0). The terms in the set of
parentheses on the right-hand side are zero asymptotically as T → ∞ because
it is simply the F.O.C. that defines γ0(β0) (= plim γ̂0). Similarly,

plim
[
γ′

1(β̂T )
(
T−1

∑
YtYt−1 −

(
T−1

∑
Yt−1

)
γ̂0

−
(
T−1

∑
Y 2

t−1

)
γ̂1

)]

= γ′
1(β̂0)

(
EYtYt−1 − (EYt−1)γ0(β0)−

(
EY 2

t−1

)
γ1(β0)

)
= 0#

again, because the second term is (asymptotically) the F.O.C. that defines
γ1(β0) = plim γ̂1. This shows that equations (44) and (45) are asymptotically
equivalent, completing the proof.

To summarize, the LR approach—the approach we are currently using—is
asymptotically equivalent, in this simplified case, to minimizing the quadratic
form

[
γ0(β)− γ̂0

γ1(β)− γ̂1

]′ [ 1 EYt−1

EYt−1 EY 2
t−1

][
γ0(β)− γ̂0

γ1(β)− γ̂1

]
'

Note that the weighting matrix would be the optimal one if the auxiliary
model were correctly specified because it is proportional to the inverse of the
asymptotic covariance matrix of

T 1/2 [
γ0(β0)− γ̂0 γ1(β0)− γ̂1

]′
#

where β0 is the true value of β.

APPENDIX B: DETAILS OF THE ECONOMETRIC PROCEDURE

B.1. Numerical Solution

This section describes how we compute a numerical approximation to a
household’s optimization problem. We iterate backward from the final period
of retirement (after which it is assumed that all members of the household
die) to compute the household’s value function at every age. During the retire-
ment period this iteration can be accomplished analytically because the value
function has a known functional form when the period utility function exhibits
constant relative risk aversion. During the working life, given a value, αi, for
the level of the household’s income profile, there are three state variables: a
household’s wealth and its beliefs about both the slope of its income profile and
the value of its persistent shock, both of which are summarized by conditional
means given the history of the household’s income shocks.

We choose a (coarse) grid for each of these variables (in particular, 40 points
for wealth, with a higher concentration of points at low levels of wealth, 8
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points for the mean belief about the slope, and 7 points for the mean belief
about the persistent shock) and then interpolate between grid points to eval-
uate the value function at points off the grid. We combine two interpolation
schemes. First, given a level for wealth, we use bilinear interpolation for the
two mean beliefs; second, we use a cubic spline in wealth. Given a value func-
tion at age t+1 (i.e., the value function’s value at each of the 40×8×7 = 2,240
grid points), we compute the optimal savings decision at time t at every grid
point. We accomplish this first by checking whether the borrowing constraint
binds (by checking whether the slope of the right-hand side of the Bellman
equation is negative at the constraint) and then, if not, by using a standard one-
dimensional root-finding algorithm to set the first-order condition for savings
to zero. Using the optimal decisions at time t, we calculate the value function
at time t at each of the grid points and then proceed backward to time t − 1.
To compute the expected value (given current beliefs) of the value function on
the right-hand side of the Bellman equation, we use Gauss–Hermite quadra-
ture with four points.

We compute value functions at each age for six different values of αi (recall
that the level of a household’s income profile is fixed across time and known
with certainty). To compute optimal savings decisions for each of the six αs
given a household’s three state variables, we use an interpolation scheme like
the one above (i.e., bilinear interpolation in beliefs followed by cubic spline in-
terpolation in wealth). We then use cubic spline interpolation across the values
of αi to calculate optimal savings for a household’s specific value of αi.

Finally, the grids for αi and the mean beliefs depend on the structural param-
eters. First, given a value for the standard deviation, σα, of αi in the population,
we construct a set of values for αi by choosing a uniform grid of probabilities
on [0'005#0'995] and then calculating arguments for a normal cumulative dis-
tribution function (c.d.f.) with mean zero and variance σ2

α that deliver these
probabilities. Second, we simulate the cross section of beliefs in the population
and then choose lower and upper bounds at each age that correspond to lower
and upper tails of 0.5% in the simulated population. We then pick a uniform
grid for each of the beliefs with these lower and upper bounds as end points of
the grid.

We check the accuracy of the approximated value functions by calculating
Euler equation errors at different points in the state space and verifying that
they are close to zero when the household is unconstrained and positive when
the household is constrained. Finally, we find that our structural parameter
estimates are not very sensitive to increases in the numbers of points in the
various grids.

B.2. Estimation via Global Methods

The indirect inference objective (equation (47) below) is a function of 14
variables, and is highly jagged and nonlinear. Therefore, we employed the
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stochastic global optimization routine described in Guvenen (2013) for max-
imizing this objective. In a nutshell, the algorithm begins by pre-testing a large
number (N) of uniformly spaced candidate points in the parameter space and
uses a multistart algorithm from the most promising (i.e., with best objec-
tive value) n∗ of these pre-tested points. For the baseline estimation we used
N = 5,000 and n∗ = 1,000. Local optimization from these candidate points is
performed via Nelder–Mead’s downhill simplex algorithm and new candidate
points are chosen in a way that concentrates around the most promising region
of the parameter space after a certain (large) number of local optimization has
been performed. Once the algorithm converges to a narrow range, we also do
multiple additional restarts using Davidon–Fletcher–Powell’s derivative-based
optimization routine to further polish up the optimum. The global algorithm
is parallel so that different local optimizations are run on separate central pro-
cessing units (CPUs) to speed up computational time. For more details, see
Guvenen (2013).

B.3. Implementation: A Gaussian Objective Function

This section describes the details of how we implement the indirect inference
estimator. Loosely speaking, the indirect inference estimator is obtained by
choosing the values of the structural parameters so that the estimated model
and the U.S. data look as similar as possible when viewed through the lens of
the auxiliary model. More concretely, define

ϵi#Data
t ≡

[
ci#Data
t − a′Xi#Data

c#t # yi#Data
t − b′Xi#Data

y#t

]

to be the residuals of estimated equations (23) and (24), which is understood
to equal zero when data for household i in year t are missing. The superscript
“Data” specifies the data source used in the regression, which is either the
PSID or the structural model (indicated by SIM (simulated)). The objective
function we use is

L(a#b#Σ#Data)= |Σ|−J/2 exp

(

−1
2

2,235∑

i=1

1993∑

t=1968

ϵi#Data
t Σ−1(ϵi#Data

t

)′
)

#(46)

where J is the total number of household-year observations used in the regres-
sions (26,411 in the baseline estimation). Although the objective function is in
the form of a multivariate Gaussian density, it is not, strictly speaking, the like-
lihood of the auxiliary-model regressions (23) and (24). This is because these
equations have as regressors both the past and the future values of endoge-
nous variables, which makes it impossible to obtain the proper likelihood by
conditioning on past observations (or the future separately). Thus, to avoid a
confusion of terminology, and for lack of a better term, we shall refer to L as
a “Gaussian objective function.”
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To implement the estimator, we first maximize the objective function in (46)
using real data (i.e., from the PSID) to obtain a set of reduced-form parame-
ters, denoted by (â# b̂# Σ̂). Next, we follow a similar procedure using simulated
data. The vector of structural parameters that we estimate is

Ω≡ (σα#σβ# corrαβ#ρ#ση#σε;λ#θ#δ#ψ;σy#µc#σc#σc0)'

For a given Ω, simulate a data set from the structural model that matches
exactly the number of observations and missing data pattern found in the PSID
data set, and estimate (23) and (24), which yields ã1, b̃1, and Σ̃1. Now, using a
fresh sequence of random draws (for all the stochastic elements in the struc-
tural model), repeat the same procedure to obtain ã2, b̃2, and Σ̃2. Repeat this
NSIM times and construct the averages

ã = 1
NSIM

NSIM∑

n=1

ãn#

and analogously for b̃ and Σ̃. Then we use these averaged parameter values—
estimated from simulated data—to evaluate the objective function (46) using
the observed (PSID) data:

L
(
ã(Ω#SIM)# b̃(Ω#SIM)# Σ̃(Ω#SIM)#PSID

)
'

If the simulated data look exactly like the PSID data—in the sense that the
estimated auxiliary-model parameters for the two data sets are identical—then
the two objective values would be identical; otherwise, the Gaussian objective
function will always be higher when evaluated at (â# b̂# Σ̂) than at (ã# b̃# Σ̃) be-
cause the latter does not maximize (46) with PSID data (but instead with sim-
ulated data). Finally, the indirect inference estimator is defined as

Ω̂ = arg min
Ω

[
L(â# b̂# Σ̂#PSID)(47)

− L
(
ã(Ω#SIM)# b̃(Ω#SIM)# Σ̃(Ω#SIM)#PSID

)

+ 10 × (WY PSID − WY SIM)
2]#

where WY is the wealth-to-income ratio defined in the text.
In effect, our indirect inference estimator maximizes the Gaussian objective

function associated with the auxiliary model subject to the “cross-equation”
restrictions that the structural model imposes on its parameters. An important
advantage of this estimator is that it obviates the need to estimate an optimal
weighting matrix; obtaining precise estimates of such matrices is often difficult.
Instead, our estimator uses an implicit weighting matrix that is close to optimal
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(to the extent that the auxiliary model is close to being correctly specified)
and delivers very good small sample results. In particular, in Appendix A.4, we
show that this estimator is asymptotically equivalent to one that minimizes a
quadratic form in the difference between the auxiliary-model parameters cal-
culated using the observed and simulated data, with the weighting matrix being
the optimal one if the auxiliary model were actually correctly specified. This
weighting matrix is not optimal here (since the auxiliary model is not an exact
“reduced form” for the structural model), but our Monte Carlo analysis in the
next section demonstrates that we obtain excellent results, with little bias and
small standard errors.

Computation of Model Specification Test Statistic. We first generate a simu-
lated data set from the structural model by setting the parameter values to
those obtained in the actual benchmark estimation. Call this the “real” data
set. We evaluate the Gaussian objective function (L) given in (46) using this
real data set. Then, using a new set of seeds for the random number genera-
tors, we simulate a new data set and estimate the parameters that must have
generated this newly simulated data. We reevaluate L using these estimated
parameters and the real data simulated in the first step. We repeat this second
step a large number of times, which gives us a probability distribution for the
test statistic under the null hypothesis that the real data are generated from
the estimated structural model.

Specifics of the Filling-in Procedure. Basically, at each age that a household
has a valid income data point, we find the percentile ranking of this observation
in the income distribution (at that age) in our sample. We then take the average
of the percentile rankings for this household over all the ages that it has a valid
observation. Then for each missing income observation of this household, we
impute the income level corresponding to its average percentile ranking given
the income distribution in our sample for that age. We apply the same proce-
dure to fill in missing consumption data. We construct growth rate variables
differently: the past growth rate for age t in the auxiliary model is computed by
taking the difference between the latest valid observation before t and the first
valid observation for the individual in the data set, and dividing this difference
by the number of years between the two points. The future growth rate at a
given age is constructed analogously. If either variable cannot be constructed
for a given age, we use the average growth rate of that variable over the life
cycle instead.

B.4. A Monte Carlo Study

To investigate the ability of the proposed estimation method to uncover the
true structural parameter vector with the specified auxiliary model, we begin
by conducting a Monte Carlo study. The results are contained in Table S.I.35

35We set ui#c ≡ 0 in the Monte Carlo analysis, because all households in the simulated data
have the same demographics and zero initial wealth, making this fixed effect redundant.
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TABLE S.I
MONTE CARLO ANALYSIS

Using Y+C Data Using Y Data Using Y Data

True
Value 1

Estimates Estimates
True

Value 2

Estimates

Mean Std. Err. Mean Std. Err. Mean Std. Err.
(1) (2) (3) (4) (5) (6) (7) (8)

Income Processes Parameters
σα 0'288 0'293 0'017 0'285 0'031 0'298 0'301 0'038
σβ 1'764 1'735 0'137 1'834 0'220 1'343 1'377 0'271
corrαβ −0'127 −0'106 0'102 −0'161 0'173 0'558 0'531 0'289
ρ 0'756 0'755 0'023 0'754 0'027 0'783 0'780 0'022
ση 0'227 0'227 0'007 0'196 0'005 0'200 0'199 0'005
σε 0'100 0'105 0'016 – – –

Economic Model Parameters
λ 0'438 0'410 0'045
δ 0'953 0'952 0'001
ψ 0'582 0'610 0'040
θ 0'451 0'447 0'028

Measurement Errors
σy 0'165 0'163 0'006 0'147 0'005 0'147a 0'146 0'005
σc 0'355 0'356 0'007 – –
σc0 0'430 0'428 0'011 – –

aIn estimations with income data alone, transitory shocks and measurement error cannot be identified separately.

So we assume all i.i.d. shocks are measurement error with a standard deviation equal to
√
σ2
y + σ2

ε using the estimated
value from the benchmark.

In column 1, the “true values” for the parameters are set to our benchmark
estimates from PSID income and consumption data (column 1 of Table I). For
each parameter, the initial values are drawn randomly from a uniform distri-
bution centered around the true value but with a wide support.36 The results
discussed here are based on 140 replications, where each Monte Carlo run
takes about 20–24 hours on a state-of-the-art workstation. Column 2 reports
the results when both income and consumption data are used jointly for esti-
mation. Clearly, the estimation method works well: bias is virtually absent for
most parameters and is very small for the remaining few. Standard deviations
are very small, indicating that all the parameters, with the exception of corrαβ,
can be identified in this framework. A useful question to ask is whether there
are benefits to using consumption data in the estimation for (the six) parame-
ters that can be identified with income data alone. To investigate this, we use

36The exact ranges for the starting values are σα ∈ [0'2#0'4], σβ ∈ [1'0#3'0], corrαβ ∈ [−0'60#
0'35], ρ ∈ [0'55#0'95], ση ∈ [0'15#0'25], σε ∈ [0'001#0'20], λ ∈ [0'001#0'75], σy ∈ [0'11#0'9], σc ∈
[0'32#0'39], σc0 ∈ [0'38#0'48], δ ∈ [0'92#0'99], and ψ ∈ [0'3#0'99].
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the same true values as in the previous exercise, but estimate the income pro-
cess with income data alone and with equation (24) as the only auxiliary-model
regression (reported in columns 4 and 5). Perhaps, unsurprisingly, the mean
estimates have little if any bias, and although the precision of the estimates
falls, this is minor for all parameters, except σβ. However, as we shall see in
the next section, when we estimate the income process from real (PSID) data,
they turn out to be different from those in column of this table (i.e., Table S.I).
Thus, another exercise we conduct is to take as the “true” values as those ob-
tained from the PSID with income data alone (column 2 of Table I). As seen in
columns 7 and 8, the estimates are still largely unbiased, but the precision now
has fallen significantly for some parameter values, most importantly for σβ—
going from 0.17 to 0.27—and for corrαβ—going from 0.15 to 0.29. This reduced
precision makes it harder to separate whether the rise in income inequality is
coming from σβ or from σα through the strong correlation.

Although it is difficult, if not impossible, to prove identification in this gen-
eral setup, overall these results suggest strongly that local identification near
the true parameter vector does indeed hold. These results are encouraging
and suggest strongly that the proposed methodology is a feasible and practical
method for estimating structural consumption–saving models with widely miss-
ing data, binding borrowing constraints, and multiple sources of heterogeneity
and randomness.

Finally, before settling down on the auxiliary model used in this paper (equa-
tions (23) and (24)), we explored a large number of alternatives. In Table S.II,
we report a subset of our results from that work, which is representative of the
issues we generally encountered.37 Columns 2 and 3 report the results when
we use the same auxiliary-model regressions as in the baseline case, but run
them separately for three age groups (instead of two), yielding 75 parameters
(instead of 50). In columns 4–9, we go in the other direction and examine a
sequence of auxiliary models that are successively more parsimonious. First
(columns 4 and 5), we use the baseline auxiliary model but put no weight on the
WY moment. Second (columns 6 and 7), we use the baseline auxiliary model
but drop regressors that have t-statistics less than 2. Finally, in columns 8 and
9, we use the same auxiliary model as in 6 and 7, but use only one set of equa-
tions for individuals of all age groups. The overall conclusion from these ex-
periments is that the baseline auxiliary model performs better in terms of both
bias and precision of the estimates than the four alternatives that we explored.
The main differences revolve around three parameters: λ, σβ, and corrαβ. For
these parameters, we find that the alternative auxiliary models tend to gener-
ate estimates that exhibit both more bias and less precision. The differences
are small in some cases, but quite large in the last experiment (with a single

37The Monte Carlo analysis in Table S.II was conducted using the baseline model in the work-
ing paper version (Guvenen and Smith (2010)), which differs in minor ways from the version in
this text.
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TABLE S.II
MONTE CARLO ANALYSIS: ALTERNATIVE AUXILIARY MODELS

Auxiliary Model: Baseline No WY Moment Drop Regressors Drop Regressors
With t-Stats < 2.0 With t-Stats < 2.0

Number of Age Groups:a Three Two Two One

“True”
Value 1

Estimates Estimates Estimates Estimates

Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Income Processes Parameters
σα 0'284 0'292 0'023 0'284 0'025 0'284 0'024 0'284 0'024
σβ 1'852 2'000 0'163 1'814 0'193 1'821 0'207 1'758 0'397
corrαβ −0'162 −0'211 0'143 −0'162 0'189 −0'170 0'205 −0'09 0'228
ρ 0'754 0'765 0'027 0'756 0'025 0'760 0'029 0'757 0'038
ση 0'196 0'201 0'005 0'196 0'005 0'194 0'005 0'195 0'005
σε 0'004 0'041 0'031 0'026 0'025 0'036 0'023 0'039 0'022

λ 0'345 0'320 0'110 0'291 0'110 0'310 0'094 0'272 0'114
δ 0'950 0'950 0'002 0'949 0'003 0'951 0'002 0'951 0'002
ψ 0'874 0'949 0'041 0'886 0'082 0'882 0'083 0'797 0'148

σy 0'147 0'146 0'010 0'142 0'008 0'142 0'007 0'141 0'007
σc 0'356 0'371 0'002 0'356 0'003 0'356 0'002 0'356 0'002
σc0 0'428 0'439 0'010 0'421 0'010 0'420 0'010 0'418 0'010

aThe baseline estimation uses two age groups in the auxiliary model.
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age group and dropping insignificant regressors). We have also experimented
with other auxiliary models that seemed a priori plausible and differed more
dramatically from those reported here, and we found them to perform very
poorly. Therefore, we do not discuss them here.

Two main conclusions emerge from those analyses. (i) The estimation
method works very well: bias is virtually absent for most parameters and is
very small for the remaining few. Standard deviations are very small, indicat-
ing that all the parameters, with the exception of corrαβ, can be pinned down
fairly precisely. (ii) The income process parameters can be estimated using in-
come data alone without any noticeable bias. However, under some plausible
parameter combinations, the precision of the estimates of some key variables is
significantly higher when estimated from income data alone (e.g., the standard
error on σβ goes from 0.17 to 0.27, and for corrαβ it goes from 0.15 to 0.29).
This reduced precision makes it harder to separate whether the rise in income
inequality is coming from σβ or from σα through the strong correlation.

We conclude that although it is difficult, if not impossible, to prove identi-
fication in this general setup, this Monte Carlo analysis suggests strongly that
local identification near the true parameter vector does indeed hold. These
results are encouraging and suggest strongly that the proposed methodology
is a feasible and practical method for estimating consumption–saving models
with widely missing data, binding borrowing constraints, and multiple sources
of heterogeneity and randomness.

APPENDIX C: DATA APPENDIX

C.1. Consumer Expenditure Survey Data

1972–1973 Waves

We create a measure of nondurable consumption expenditures by adding
the expenditures on food, alcohol, tobacco, fuel and utilities, telephone, other
services, laundry, clothing, transportation, personal goods, recreation, reading,
gifts, and other goods. The original size of the 1972–1973 CE is 19,975 house-
holds. We keep households in our sample if they are headed by a married male
who is between 30 and 65 years old, and have nonzero food and income re-
ports. In Table S.III, we report the number of households deleted from our
sample during each sample selection requirement.

1980–1992 Waves

We merge the 1972–1973 CE data with the 1980–1992 data used in Blundell,
Pistaferri, and Preston (2006) (hereafter BPP). BPP use a similar sample se-
lection as above. In addition, they exclude households with heads born before
1920 or after 1959. All nominal variables are expressed in constant 1982–1984
dollars. Income is deflated using the Consumer Price Index (CPI). Total food
expenditures are deflated using the average food price series provided by the
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TABLE S.III
CE SAMPLE SELECTION

Selection Criterion Dropped Remain

Initial sample – 19,975
Male head 4,470 15,505
Age restriction 5,200 10,305
Nonzero income and food 709 9,596
Married 874 8,722
Nonmissing education 213 8,509

Bureau of Labor Statistics. The inflation rates for food, fuel, alcohol, and trans-
portation were determined by the corresponding price series provided by the
Bureau of Labor Statistics (BLS). We also drop households that have total real
food consumption per adult equivalent less than $300. Here, adult equivalent
is defined as the square root of family size.

C.2. PSID Data

C.2.1. Sample Cleaning

Our measure of total food consumption comes from summing the responses
to the questions about food consumed at home and food consumed away from
home in each year (except for 1968, where the survey asked only about total
food expenditures). This gives us a total food expenditure variable in each sur-
vey wave except for 1972, 1987, and 1988, when no food expenditure questions
were asked.

In the PSID, the education variable is sometimes missing and sometimes
inconsistent. To deal with this problem, we take the highest education level
that an individual ever reports and use it as the education variable for each
year. Since the minimum age needed to be included in our sample is 25, this
procedure does not introduce much bias to our estimated education variable.

A well known feature of the age variable recorded in the PSID survey is that
it does not necessarily increase by 1 from one year to the next. For example, an
individual can report being 30 years old in 1970, 30 in 1971, and 32 in 1972. This
may be perfectly correct from the respondents’ point of view, since the survey
date may be before or after the respondent’s birthday in any given year. We
create a consistent age variable by taking the age reported in the first year that
the individual appears as the head of a household and add 1 to this variable in
each subsequent year.

The income variable we use is total after-tax nonfinancial household income.
The way we construct this variable varies across years in the PSID because
of different questions asked and different variable definitions. From 1968 to
1974, we take total family money, subtract taxable income of the head and
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wife (which includes both asset and labor income), and add back head and
wife annual labor income. The family money variable is defined as total taxable
income and transfers of the head, wife, and others in the household. From 1975
to 1983, we take the family money variable and subtract the asset income of the
head and the asset income of the wife. From 1975 to 1977, the asset income of
the head is defined as the sum of the asset part of business income, the asset
part of farming, and the asset part of rental income. From 1978 to 1982, the
definition of the asset income of the head is the same, except for the addition of
the asset part of gardening. From 1983 to 1991, the definition remains the same
except dividend income is also added. For 1992, the definition remains the
same except interest income and income from family trusts are added. From
1975 to 1983, the wife’s asset income is listed as one variable. From 1984 to
1991, we generate the wife’s asset income as the sum of the wife’s share of asset
income and the wife’s other asset income. For 1992, the wife’s asset income is
the sum of the wife’s dividend income, interest income, family trust income,
asset part of business income, and other asset income. From 1984 to 1992, to
create the nonfinancial income variable, we take family money and subtract
head asset income, the wife asset income, and asset income of other members
of the household.

C.2.2. Sample Selection

We start with a possible sample of 67,282 individuals interviewed between
1968 and 2005. To be in our final sample an individual must satisfy each of eight
criteria in at least one year between 1968 and 1992. The number of individuals
dropped at each stage in the sample selection is listed in Table S.IV.

1. The individual must be from the original main PSID sample (not from the
Survey of Economic Opportunities or Latino subsamples).

2. We require that the individual be married and that the individual has not
changed partners from the previous year.

TABLE S.IV
PSID SAMPLE SELECTION

Criteria Dropped Remain

Initial sample – 67,282
Main sample 39,906 27,376
Continuously married 2,805 24,571
No major composition change 4 24,567
Missing data 1,032 23,535
Outlier or top-coded 71 23,464
Male and head of household 19,232 4,232
Age restriction 429 3,803
Five observations or more 1,568 2,235
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3. We require that individuals had no significant changes in family composi-
tion. This means that they responded either “no change” or “change in family
members other than the head or wife” to the question about family composi-
tion changes.

4. The individual must not have missing variables for the head or wife labor
income. The education variable for the head must also not be missing (this ed-
ucation variable refers to the one created after the sample cleaning mentioned
previously).

5. The individual must not have food or income observations that are out-
liers. An income outlier is defined as a change in real income relative to the
previous year of greater than 500% or less than –80% or total income less
than $1,000. A food expenditure outlier is defined as real total household food
expenditure greater than income or food expenditure per effective adult less
than $300. Food expenditure per effective adult is defined as total household
food expenditure divided by the square root of the number of members in the
family.

6. We require that individuals have non-top-coded observations for the labor
income of the head and wife and non-top-coded observations for total nonfi-
nancial income.

7. The individual must be a male and the head of household.
8. Household heads must be between 25 and 65 years old. (Only those be-

tween 25 and 55 are used in the main estimation in the paper.)
Adjusting for Taxes. From the nonfinancial income variable we need to sub-

tract taxes paid on nonfinancial income. The PSID reports estimated total
taxes for all households until 1991. For the years 1968–1990, we use the sum
of the variables in the PSID that give the estimated federal tax liabilities of
the head and wife, and of others in the household. For 1975–1978, a vari-
able is available that gives the amount of low income tax credit the household
received. For these years the income tax credit is subtracted from the total
amount of tax liability. We regress total tax liability on total labor income and
its square, and on total asset income and its square. We use these estimates to
predict the total taxes paid on labor income. For the years 1991 and 1992, we
use the National Bureau of Economic Research (NBER) TAXSIM software to
estimate the total taxes paid by each household on labor income. We assume
that the husband and wife file a joint tax return and that the number of depen-
dents claimed equals the number of children in the household. We also use the
annual property tax liability variable as an input to the TAXSIM software to
account for property taxes being deducted from federal taxable income. Since
the public release version of the PSID does not contain state identifiers, we do
not use the TAXSIM software to estimate state taxes paid. Finally, we subtract
this estimated labor income tax from household income above to obtain the
household after-tax labor income measure used in the estimation analysis.

Measure of Net Worth. Our wealth measure includes cash and demand de-
posits; time and saving deposits, certificates of deposit (CDs), and money mar-
ket accounts; stocks, bonds, and mutual fund holdings (including independent



20 F. GUVENEN AND A. A. SMITH, JR.

retirement accounts (IRAs)); cash surrender value of life insurance policies;
net equity in unincorporated businesses; and net equity in owner-occupied
housing and other real estate. From the sum of these assets, we subtract con-
sumer debt (credit card debt, student and auto loans, etc.). The income mea-
sure is total household labor and asset income in that year.

C.3. Constructing a Panel of (Imputed) Consumption

The PSID has a long panel dimension but covers limited categories of con-
sumption, whereas the CE survey has detailed expenditures over a short period
of time (four quarters). As a result, most previous work has either used food
expenditures as a measure of nondurable consumption (available in PSID) or
resorted to using repeated cross sections from the CE under additional as-
sumptions.

In a recent paper, Blundell, Pistaferri, and Preston (2006) (hereafter, BPP)
developed a structural method that imputes consumption expenditures for
PSID households using information from the CE survey. The basic approach
involves estimating a demand system for food consumption as a function of
nondurable expenditures, a wide set of demographic variables, and relative
prices as well as the interaction of nondurable expenditures with all of these
variables. To deal with the endogeneity of food and nonfood expenditures as
well as measurement error in these variables, the estimation is carried out with
an instrumental variables regression. The key condition for the imputation pro-
cedure to work is that all the variables in the demand system must be available
in the CE data set, and all but nondurable expenditures must be available in the
PSID. One then estimates this demand system using the CE data, and as long
as the demand system is monotonic in nondurable expenditures, one can invert
it to obtain a panel of imputed consumption in the PSID. BPP implement this
method to obtain imputed consumption in the PSID for the period 1980–1992
and show that several statistics calculated using the imputed measure compare
quite well with their counterparts from the CE data.

Our Imputation Procedure

In this paper, we modify and extend the method proposed by BPP to cover
the period 1968–1992. Here we provide a brief overview of our method and a
discussion of the quality of the imputation.

First, BPP include time dummies interacted with nondurable expenditures in
the demand system to allow for the budget elasticity of food demand to change
over time, which they find to be important for the accuracy of the imputation
procedure. However, CE data are not available on a continuous basis before
1980, whereas we would like to use the entire length of the PSID (going back
to 1968), making the use of time dummies impossible. To circumvent this prob-
lem, we replace the time dummies with the food and fuel inflation rate, which
is motivated by the observation that the pattern of time dummies estimated
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by BPP after 1980 is quite similar to the behavior of these inflation variables
during the same period.

A second important element in our imputation is the use of CE data be-
fore 1980. In particular, CE data are also available in 1972 and 1973, and in
fact these cross sections contain a much larger number of households than the
waves after 1980.38 The data in this earlier period also appear to be of supe-
rior quality in certain respects compared with those from subsequent waves.39

The use of these earlier data provides, in some sense, an anchor point for the
procedure in the 1970s that improves the overall quality of imputation as dis-
cussed below. Finally, instead of controlling for life-cycle changes in the de-
mand structure using a polynomial in age (as done by BPP), we use a piece-
wise linear function of age with four segments, which provides more flexibility.
This simple change improves the life-cycle profiles of mean consumption and
the variance of consumption rather significantly. With these modifications, we
obtain an imputed consumption measure that provides a good fit to the cor-
responding statistics in the CE data. Here, we summarize the most relevant
statistics. Further details are contained in Appendix C.3.

We begin with two dimensions of consumption data that are crucial for our
estimation exercise. First, the left panel of Figure S.1 plots the average life-
cycle profile of log consumption implied by the CE data (marked with cir-
cles) as well as the counterpart generated by the imputed data (marked with
squares).40 To reduce the noise in the data, the figure also plots the correspond-
ing “smoothed” series obtained by a Nadaraya–Watson kernel regression, with
a Gaussian kernel. The two graphs overlap remarkably well, especially up to
early age 50.41 Second, the right panel plots the within-cohort variance of log
consumption over the life cycle along with the smoothed series. Both in the
CE and with the imputed PSID data, the variance rises between ages 25 and

38The sample size is around 9,500 units in 1972–1973 surveys, but ranges from 4,000–6,000 units
in the waves after 1980. There are also some differences in the survey design in the earlier CE—
such as the nonrotating nature of the sample in the 1972 and 1973 panels—but these differences
do not appear consequential for our purposes. See Johnston and Shipp (1997) for a more detailed
comparison of different waves of the CE survey over time.

39Slesnick (1992) shows that when one aggregates several subcomponents of consumption ex-
penditures in the CE, they come significantly closer to their counterparts in the National Income
and Product Accounts (NIPA) than do the CE waves after 1980. For example, in 1973, the frac-
tion of total expenditures measured by the CE is 90% of personal consumption expenditures as
measured by NIPA, whereas this fraction is consistently below 80% after 1980 and drops to as
low as 75% in 1987. Similarly, the fraction of consumer services in the CE accounts for 93% of
the same category in NIPA in 1973 but drops to only 66% in 1989.

40The life-cycle profiles are obtained by controlling for cohort effects as described in Guvenen
(2009).

41If we do not use the 1972–1973 CE in the imputation procedure, the average profile of im-
puted consumption would rise by 51% between ages 25 and 45 instead of the 22% rise in the
baseline imputation and would, therefore, vastly overestimate the corresponding rise in the CE
data shown in Figure S.1.
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FIGURE S.1.—Mean and variance profile of log consumption over the life cycle.

65, although the total rise is rather small—about 5 log points. The finding of
a small rise in within-cohort consumption inequality contrasts with earlier pa-
pers that have studied the CE data over the period from 1980 to 1990 (such
as Deaton and Paxson (1994) and Storesletten, Telmer, and Yaron (2004)), but
is consistent with more recent papers that have used samples extending to the
late 1990s (cf. Heathcote, Perri, and Violante (2010)). This finding is important
in understanding some of the estimates (especially, λ).

Another useful exercise is to test the out-of-sample predictive ability of the
imputation procedure. To do this, we split the CE sample used in the imputa-
tion above into two randomly drawn subsamples (each containing exactly half
of the observations in each survey year). We use the first subsample to estimate
the food demand system as above, which we then use to impute the nondurable
consumption of the second subsample (control group).42 Figure S.2 plots the
actual consumption of the control group against the imputed consumption for
each household (for the simulation with the median regression slope). The im-
puted consumption data form a cloud that aligns very well with the 45-degree
line. In fact, a linear regression of imputed consumption on the actual one
yields an average slope coefficient of 0.996 and a constant term of 0.25. The
average R2 of the regression is 0.67, implying that the imputed consumption
has a correlation of 0.81 with the actual consumption at household level.43 The
fact that the slope coefficient is almost equal to 1 is important: a slope above
1 (with a positive intercept) would indicate that the imputation systematically
overstates the variance of true consumption, which would in turn overstate the
response of consumption to income shocks, thereby resulting in an overesti-

42To control for the randomness of each subsample, we repeat this exercise 200 times.
43The results in the text refer to the average of these 200 replications. Across simulations, the

slope coefficient in the regression ranges from 0.978 to 1.020, and the R2 ranges from 0.644 to
0.691.
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FIGURE S.2.—Out-of-sample predictive power of the imputation method in the CE. This plot
is obtained by estimating the instrumental variable (IV) food demand system on a randomly cho-
sen half of the CE sample and then imputing the consumption for the other half (control group).
The figure plots the actual consumption of the control group versus their imputed consumption.
The average regression slope is 0.996, the average constant is 0.24, and the average R2 is 0.67
over 200 repetitions.

mation of the size of income shocks. The opposite problem would arise if the
slope coefficient was below 1.

As a final, and rather strict, test to detect whether systematic patterns exist
in the imputation error, we regressed it on household characteristics including
dummies for each age group, education dummies, family size, region dummies,
number of children dummies, and food and fuel prices. The median R2 of this
regression was 0.002 (and there was at most one variable that was significant
at the 5% level in any given simulation), indicating no evidence of systematic
imputation errors by demographic groups. Overall, we conclude that the impu-
tation procedure works fairly well and does not result in any systematic over-
or underprediction of actual consumption.

Further Details

This section describes the details of the imputation procedures and reports
some further validation tests on the quality of imputation. Specifically, we es-
timate a food demand system as a function of nondurable expenditures, de-
mographics, and relative prices using an instrumental variables approach. To
deal with endogeneity and measurement error, we instrument log nondurable
expenditures (as well as their interaction with demographics and prices) with
the cohort–year–education specific average of the log of the husband’s hourly
wage and the cohort–year–education specific average of the log of the wife’s
hourly wage (as well as their interaction with the demographics and prices).
The cohort–year–education specific averages of the log of the husband’s and
wife’s hourly wage rates are generated as follows. The cohorts are divided into
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5-year cells by year of birth, starting with 1910 and ending with 1955. The ed-
ucation cells are divided into high school dropouts, high school graduates, and
more than high school education. For each year (1972, 1973, and 1980–1992)
and each cohort–education cell, we calculate the mean of the log of hourly
wages of household heads and wives. The four age dummies used in the in-
teraction terms are less than 37, between 37 and less than 47, between 47 and
less than 56, and greater than or equal to 56. There are three inflation dum-
mies: less than 5% inflation, between 5% and less than 11%, and greater than
or equal to 11%. There are three children categories used in the interaction
terms: one child, two children, and three or more children.

Table S.V reports the results from the IV estimation of the demand system
using the CE data. Several terms that include the log of nondurable expendi-
tures are significant as well as several of the demographic and price variables.
Most of the estimated coefficients have the expected sign. We invert this equa-
tion to obtain the imputed measure of household nondurable consumption
expenditures.

BPP used the evolution of the variance of consumption over time to check
the quality of their imputation procedure. For completeness, here we discuss
the results of our imputation for the same statistic. Figure S.3 plots the cross-
sectional variance of log consumption over time. In the figure, the circles mark
the CE data, whereas the squares show the imputed consumption in the PSID.
Similarly, the dashed line and the solid line show the kernel-smoothed version.
The imputed consumption series tracks the CE data fairly well, showing an
overall rise in consumption inequality of 6–7 log points between 1980 and 1986,
followed by a drop from 1986 to 1987 and not much change after that date.
The dashed-dotted line shows that if one simply were to use food expenditures
in the PSID instead, the overall pattern would remain largely intact, but the
movements would be quantitatively muted compared with the data: the rise in
consumption inequality would be understated by more than half by 1986 and
by as much as two-thirds by 1991.

APPENDIX D: ROBUSTNESS ANALYSIS

We now present results from robustness exercises. These experiments have
been conducted with a version of the model in which the probability of death is
set to zero until age T = 80, and households have access to self-insurance only
(the baseline case in the working paper version, Guvenen and Smith (2010)).
These two changes do not make an appreciable difference in the results so we
present the robustness analysis using this slightly simpler version of our model.

D.1. Lower Interest Rate

In our benchmark, we interpreted the risk-free asset as corresponding to a
broad set of assets available to households, which motivated our relatively high
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TABLE S.V
INSTRUMENTAL VARIABLES ESTIMATION OF DEMAND FOR FOOD IN THE CEa

Variable Estimate Variable Estimate

ln(c) 0'798∗∗∗ ln(c)× I{11% ≤ 0 logpfuel} 0'00386∗

(26'80) (1.83)
ln(c)× age × I{age < 37} 0'00036∗∗∗ ln(c)× (year − 1980) −0'00057

(3'38) (−0'68)
ln(c)× age × I{37 ≤ age < 47} 0'00048∗∗∗ One child 0'149

(5'45) (1'16)
ln(c)× age × I{47 ≤ age < 56} 0'00042∗∗∗ Two children 0'564∗∗∗

(5'75) (3'98)
ln(c)× age × I{56 ≤ age} 0'00037∗∗∗ Three children+ 1'203∗∗∗

(6'08) (8'23)
ln(c)×High school dropout −0'129∗∗∗ High school dropout 1'207∗∗∗

(−7'57) (7'61)
ln(c)×High school graduate −0'043∗∗∗ High school graduate 0'417∗∗∗

(−2'78) (2'90)
ln(c)×One child −0'014 Northeast 0'0587∗∗∗

(−1'01) (10'36)
ln(c)×Two children −0'055∗∗∗ Midwest 0'0293∗∗∗

(−3'68) (5'23)
ln(c)×Three children+ −0'123∗∗∗ South −0'0031

(−7'92) (−0'63)
ln(c)× I{5% ≤ 0 logpfood < 8%} 0'00096 Family size 0'0509∗∗∗

(1'01) (16'20)
ln(c)× I{8% ≤ 0 logpfood < 11%} 0'00858∗∗∗ lnpfood 0'581∗∗

(4'25) (2'28)
ln(c)× I{11% ≤ 0 logpfood} −0'00091 lnpfuel −0'117

(−0'39) (−0'97)
ln(c)× I{5% ≤ 0 logpfuel < 8%} 0'00074 White 0'0824∗∗∗

(0'66) (11'38)
ln(c)× I{8% ≤ 0 logpfuel < 11%} 0'00091 Constant −1'822∗∗∗

(0'53) (−2'65)
Observations 21,864

aWe pool the data from the 1972–1973 waves of the CE with the 1980–1992 waves. We instrument log food expen-
ditures (and their interactions) with the cohort–year–education specific average of the log husband’s and wife’s hourly
wage rates (and their interactions with age, education, and inflation dummies and a time trend). The t-statistics are
contained in parentheses. The lowest value of Shea’s partial R2 for instrument relevance is 0.086, and the p-value of
the F -test on the excluded instruments is smaller than 0.001 for all instruments.

choice of r = 5'26%. Another perspective is that such an asset can be thought
of as a government bond, so that a lower return may be more appropriate. To
explore the sensitivity of our results, we reestimate the model, setting r = 3'1%
(i.e., γ = 0'97). As seen in column 1 of Table S.VI, this change has virtually no
effect on the estimates of the income process as well as measurement error
parameters. As for the economic model parameters, λ increases—slightly—
from 0.345 to 0.38, whereas δ increases significantly (from 0.95 to 0.964) and
borrowing constraints become tighter—ψ falls significantly, from 0.87 to 0.79—
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FIGURE S.3.—Cross-sectional variance of log consumption in CE and imputed PSID data:
1968–1992.

both presumably to make the model better match the wealth-to-income ratio
moment. Overall, the most important parameters about the income process as
well as λ seem very robust to reasonable changes in the interest rate.

D.2. Alternative Filling-in Method

We now examine the robustness of the estimation results to the method
chosen for filling in missing data (column 2 of Table S.VI). This could be po-
tentially important because more than half of the values in our sample are
missing—and therefore filled in—compared to a fully balanced panel. As an
alternative procedure, we consider a much simpler filling-in method: for each
individual, we calculate the lifetime average of either log consumption or log
income using available observations. If a consumption or income observation
is missing in a given year, we simply replace the missing data with this average.
We then use this filled-in data to construct all the missing right-hand-side vari-
ables in the regressions. As seen here, with the exception of σα, the estimates
are largely unchanged from the benchmark case.

D.3. Higher Minimum Income

We now investigate the sensitivity to the choice of minimum income Y , by
doubling its magnitude to 10% of median income (column 3). The effects on
the estimates are very mild, with the only noteworthy changes being a rise in λ,
from 0.345 to 0.375, and a fall in ψ, from 0.874 to 0.756. However, because Y
has been doubled, the borrowing constraint is actually looser than before: a25
rises to 41% of average income.
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TABLE S.VI
SENSITIVITY ANALYSIS: ALTERNATIVE ASSUMPTIONS

Low Doubling No Maximum
Interest Alternative Minimum Use Data Prior Prior

Rate Filling-in Income Up to Uncertainty Uncertainty
γ = 0'97 Method Y = 0'10 Age 65 λ= 0 λ= λmax

(1) (2) (3) (4) (5) (6)

Income Processes Parameters (can be identified with income data alone)
σα 0'284 0'220 0'293 0'228 0'268 0'248
σβ 1'856 1'916 1'886 1'088 1'756 1'04
corrαβ −0'164 0'003 −0'166 −0'161 −0'086 0'751
ρ 0'755 0'760 0'759 0'801 0'777 0'806
ση 0'196 0'200 0'208 0'200 0'195 0'196
σε 0'005 0'006 0'007 0'003 0'006 0'010

Economic Model Parameters (need consumption data)
λ 0'380 0'327 0'374 0'520 0'0 (fixed) 0'656a

δ 0'964 0'950 0'951 0'943 0'954 0'951
ψ 0'790 0'921 0'757 0'992 0'761 0'895

Measurement Error and Transitory Shocks (need consumption data)
σy 0'147 0'145 0'156 0'152 0'148 0'151
σc 0'356 0'356 0'356 0'356 0'355 0'356
σc0 0'429 0'414 0'427 0'432 0'424 0'433

Max % constrained. . . 16'1% 10'2% 12'5% 9'1% 14'1% 13'2%
. . . at age 30 31 30 35 30 33
a25 / mean income 0'35 0'44 0'41 0'93 0'21 0'37
a55 / mean income 0'60 0'59 0'87 0'73 0'44 0'55

aThis value of λ represents the highest value feasible (i.e., highest prior uncertainty) given that households know their αi , which is correlated with βi and thus contains
information about it.
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D.4. Using All Available Data Up to Age 65

In the estimation so far, we have restricted our sample to ages 55 or younger,
for several reasons.44 Still, it is useful to examine how the results would change
if the entire sample (up to age 65) were used in the estimation. As seen in col-
umn 4 of Table S.VI, some parameters change very little, whereas other impor-
tant ones do change. For example, σβ falls to 1.08 and λ simultaneously rises to
0.51, implying that the amount of prior uncertainty about growth rates (as mea-
sured by the prior standard deviation) falls slightly from 1'85×0'345 = 0'638 to
1'08 × 0'51 = 0'55. Now both the variance of log income and the consumption
graphs fit much better to the data. It seems that the deviations of the variance
of log income and consumption figures from their data counterpart were “tol-
erable” as viewed through the auxiliary model, when data up to age 55 were
used in estimation. But the inequality profiles implied by σβ = 1'85% deviate
farther from the data after age 55 at an increasing rate. This leads the estimator
to reduce σβ as well as λ×σβ, which then results in a better fit for both graphs.
It is interesting to see that even though these moments have not been used in
the estimation explicitly, matching the auxiliary-model coefficients somehow
ensures that the estimated model does a reasonable job of matching these eco-
nomically important figures.

D.5. Fixing Borrowing Constraints

We explore the effects of fixing the tightness of the borrowing constraint at
some values that have been used in the literature on the estimated parameters.
Column 7 of Table S.VII displays the results when the borrowing constraint is
chosen to be the natural borrowing limit, which is obtained by setting ψ = 1.
Similarly, column 8 reports the results of the opposite exercise—of disallowing
borrowing—obtained by setting at ≡ 0. The value of risk aversion is set to 2
as in the benchmark case in Table 1. Although there is some variation across
the two columns and there are some differences from the benchmark case, by
and large, these differences are quite minor. The main difference is in the frac-
tion of households that are constrained, which is 38% when no borrowing is
allowed, 14% in the benchmark estimation, and 7% with the natural borrow-
ing limit. Thus, there is clearly sufficient information in the auxiliary model to
allow us to pin down the value of the borrowing constraint, but its particular
value does not seem to affect the other estimates substantially.

44One is that our assumption of linearity for the individual-specific trend is more likely to be
accurate for households before this age, as widening income inequality slows down near retire-
ment. Second, labor hours inequality increases near the retirement age, which weakens the link
between wage and income inequality. Given that we are abstracting away from labor supply choice
here, it seems more appropriate to restrict attention to the earlier period. Finally, the number of
individuals in our sample goes down quickly at older ages, increasing the noise and reducing the
usefulness of data from this group.
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TABLE S.VII
SENSITIVITY OF STRUCTURAL ESTIMATES TO RESTRICTIONS ON ECONOMIC MODEL PARAMETERSa

Role of Preference Parameters Borrowing Limit

Low RRA High RRA δ Fixed δ Fixed δ Estim. δ Fixed ψ= 1 at ≡ 0
Preset Parameters↓ (1) (2) (3) (4) (5) (6) (7) (8)

φ (Risk aversion) 1 3 1 1 1 1 2 2
δ (Time discount factor) Estim. Estim. 0'94 0.94 Estim. 0'953 Estim. Estim.
Weight on WY moment 10'0 10'0 1'0 0'0 0'0 0'0 10'0 10'0

Income Processes Parameters (can be identified with income data alone)
σα 0'283 0'282 0'339 0'326 0'332 0'281 0'333 0'272
σβ 1'838 1'841 3'997 2'165 2'093 1'850 2'129 1'747
corrαβ −0'161 −0'161 0'660 −0'243 −0'162 −0'161 −0'139 −0'101
ρ 0'756 0'756 0'821 0'724 0'738 0'760 0'750 0'765
ση 0'196 0'196 0'238 0'194 0'196 0'195 0'195 0'194
σε 0'005 0'005 0'007 0'001 0'0124 0'005 0'029 0'005

Economic Model Parameters (need consumption data)
λ 0'368 0'330 0'998 0'001 0'035 0'343 0'360 0'283
δ 0'953 0'942 0'94∗ 0'94∗ 0'938 0'953∗ 0'951 0'949
ψ 0'877 0'871 0'002 0'997 0'998 0'923 0'99∗ at ≡ 0

Max % constrained 13'9% 10'5% 52'2% 21'7% 14'3% 12'2% 7'2% 38'1%
Max constrained age 31 33 25 35 35 33 35 25
Wealth-to-income ratio 1'08 1'08 0'94 −0'03 0'15 1'03 1'08 1'07
a25 / Mean income 0'33 0'32 0'07 0'90 0'90 0'44 0'83 0'0
a55 / Mean income 0'53 0'53 0'31 0'73 0'73 0'59 0'71 0'0

aThe values of measurement errors and transitory shocks are not reported because they vary by little across specifications. The range for σy is from 0.129 to 0.149, for σc it is
0.353 to 0.356, and for σc0 , it is from 0.42 to 0.429, with the exception of column 3 for which it is 0.514. ∗Fixed a priori at the value indicated.
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D.6. On Risk Aversion, Time Preference Rate, and Borrowing Limit

Although it would be valuable per se if we could separately identify δ and φ,
this is not the central aim of this paper. But the assumptions we make regard-
ing these parameters (e.g., whether they are fixed, estimated, etc.) still mat-
ter, because they could affect the inference regarding income risk—potentially
seriously—in turn jeopardizing the main goal of our investigation (as shown
in Section 5.1). Therefore, we begin by conducting a series of sensitivity ex-
periments to understand the effects of preference parameters on the overall
estimation results. To this end, we first reestimate the benchmark specifica-
tion, but now fix the relative risk aversion (RRA) at, respectively, 1 (column
1 of Table S.VII) and 3 (column 2). A quick glance across these two columns
reveals two findings. First, δ and φ move strongly in opposite directions: δ
goes up to 0.9526 when φ is reduced to 1, and goes down to 0.9416 when φ is
increased to 3. Second, and fortunately, the remaining—11—parameters are
virtually unchanged from the benchmark case, a quite striking finding. We now
discuss these two sets of results in turn.

D.6.1. Are δ and φ Separately Identified?

The strength of the opposite movement in δ and φ (as we vary the latter) is
remarkable. In fact, the correlation between the two estimates is worth report-
ing: –0.97! However, a correlation with three data points (one for each of the
three values for risk aversion) is, obviously, not as informative as one would
like, so we conducted a simple Monte Carlo study where we fixed all the pa-
rameter values except δ andφ, which are estimated. Across 200 repetitions, the
correlation between the estimates of the two parameters was –0.88. The results
suggest that only a particular combination of the two parameters is identified,
but that there is insufficient information to disentangle the two. In unreported
results, we have tried adding additional regressors into equations (23) and (24),
as well as adding new regressions suggested by theory, such as the second or-
der moments of consumption growth or levels (computed in various ways) to
capture precautionary savings demand, which could be informative about φ.
In every case, we found the same strongly negative correlation.

Given how strongly this result manifests itself in our framework, we turn to
another paper, Gourinchas and Parker (2002), which estimates the same two
parameters also jointly using income and consumption data. There are several
important differences between our paper and theirs, leaving open the possi-
bility that there could be different sources of identification in that paper that
perhaps could overcome the difficulty we face. These authors report 18 differ-
ent estimates of δ and φ across four classes of experiments: (i) their baseline
estimation using robust and optimal weighting matrices (two results), (ii) esti-
mates for five education groups, (iii) estimates for four occupational groups,
and, finally, (iv) estimation results for seven different robustness exercises. In
most cases, the standard errors are small, indicating that both parameters are
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estimated quite precisely. (Furthermore, notice that there is no particular rea-
son for the estimates of δ and φ to be correlated across these 18 pairs if each
parameter is precisely identified.) Nevertheless, the correlation between the 18
pairs of estimates turns out to be –0.989. Moreover, this result is not driven by
a few outliers. For example, the five estimates for different educational groups
have a correlation of –0.978, whereas the correlation is –0.975 for the differ-
ent occupation groups and –0.999 across the robustness results. (Throwing out
two pairs from the last case that have very low estimates of δ yields the lowest
correlation we obtain: –0.953.)

Based on these findings, we conjecture that the lack of identification be-
tween δ and φ may be endemic to the estimation of these parameters from
consumption–savings models with fixed interest rates. We view these (admit-
tedly negative) results as providing a challenge for future work to find ways to
pin these two key parameters down precisely.

D.6.2. Does It Matter for the Estimates of Income Risk That φ Is Not Separately
Identified?

As noted above, the core issue for this paper is the estimation of income
risk. On this front, the news is more encouraging: all the parameters relating
to income risk are robust to variations in risk aversion, which is reassuring. One
question these results bring up is the following: Can we simply fix a reasonable
combination of (φ#δ) (say, based on values commonly used in the literature)
and estimate only the income process parameters, or is it important to estimate
at least one of these two parameters as we have done so far?

To answer this question, we fix φ = 1 and δ = 0'94, and estimate the re-
maining parameters (reported in column 3 of Table S.VII). These estimates
are dramatically different from the benchmark values and appear very implau-
sible. For example, σβ is now 3.997 (which is essentially at the upper bound we
imposed for computational reasons) and corrαβ is 0.66, implying an enormous
rise in the variance of log income over the life cycle that is many times what
is observed in the data: λ is now 0.687, which is at almost its highest theoreti-
cal value and implies that households perceive 2/3 of this overestimated rise in
income inequality as risk/uncertainty. Moreover, 52% of households now ap-
pear to be borrowing constrained. By any measure, these estimates are quite
extreme. To make things worse, we should note that here we are reporting
the results of the estimation when the weight on the WY moment is reduced
from 10.0 in the benchmark case to 1.0. If it were not for this change, the esti-
mates would be even more extreme, with the remaining parameters also getting
stuck at their bounds (ρ= 0'9999, etc.) Overall, this experiment illustrates how
quickly things can go wrong if proper care is not applied. Thus, the specific val-
ues of (φ#δ) do not seem to matter for the other estimates only if we estimate
at least one of those parameters.

One reaction could be that perhaps these extreme outcomes are the results
of imposing the WY moment: because δ is fixed, the model cannot adjust this
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parameter to easily match the value of WY observed in the data, and instead
substantially increases both the amount of income risk (as roughly measured
by λσβ) and the tightness of the borrowing constraint (ψ = 0'02). Even with
these dramatic adjustments the model still undershoots the wealth-to-income
ratio: 0.94 in the estimated model versus 1.08 in the data. Thus, as important
as this moment may be for a proper calibration, perhaps we can obtain more
plausible estimates if we reestimate the model by dropping that moment. This
exercise is carried out in column 4. Indeed, some of the parameter estimates
look more reasonable now: σβ is 2.167% and the correlation is –0.24, which
is not substantially different from the benchmark. Other estimates of the in-
come process are also plausible and close to their benchmark values. Unfortu-
nately, though, the parameters of the economic model now look quite suspect:
λ = 0'001 and ψ = 0'997, both having moved from one bound to the other.
Furthermore, the value of WY , which has not been imposed as a moment, is
now –0.03 as compared to 1.08 in the data! A final thought is that perhaps in
addition to eliminating the WY moment, we should also not fix δ and instead
estimate it. The results are displayed in column 5, and the results are barely
changed from the previous column.

These negative results lead to another important question. It seems that the
WY moment is very important for properly estimating some parameters (such
as λ and ψ, among others). But previously we spent significant efforts dis-
cussing how the auxiliary-model regressions were important for pinning down
these parameters. Is it possible that this emphasis was misplaced and the iden-
tification of several important parameters is coming mainly from the WY mo-
ment? It turns out the answer is no. What is happening instead is that a proper
value of δ is essential for the estimation exercise, and the WY moment simply
ensures that δ is pinned down at a reasonable value given the other parame-
ters of the model.45 This can be seen as follows. In column 6, we reestimate the
same model as in column 5—that is, without the WY moment, but we fix δ at
its estimated value (0.953) when φ was set to 1 (in column 1), when the WY
moment was used and δ was estimated. Notice that now we will not use the
WY moment, but only rely on the auxiliary-model regressions. The estimates
in column 6 of Table S.VII are very similar to those in column 1, and all appear
very reasonable. This confirms our conjecture that the WY moment’s main role
is to pin down the appropriate value of δ, and once that is achieved, all other
parameters are pinned down by the auxiliary model. (The small qualification
to this statement is that ψ is 0.927 in column 5 instead of 0.88 in the bench-
mark case, which suggests that the WY moment perhaps also contains some
information about the borrowing constraint. This would not be surprising.)

45Notice that the role of δ as determining the wealth-to-income ratio is slightly different in our
model compared to a standard calibration exercise. This is because here the amount of risk is not
fixed (as would be the case in a calibration exercise where the income process is calibrated first
and then δ is chosen). Instead, the amount of risk and patience is jointly estimated.
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To summarize, we find that (i) fixing either δ or φ and estimating the other
is perfectly fine for properly estimating all the remaining parameters of the
structural model, but (ii) fixing both δ and φ simultaneously creates severe
biases. The main role of the WY moment appears to be to pin down a plausible
value of δ that is consistent with the φ chosen, but has otherwise very little
impact on the estimates of remaining parameters.
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