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Abstract

We study individual earnings dynamics over the life cycle using panel data on
millions of U.S. workers. Using nonparametric methods, our analysis reaches two
broad conclusions. First, the distribution of earnings changes displays substantial
deviations from lognormality—the standard assumption in the incomplete mar-
kets literature. In particular, earnings changes display strong negative skewness
and extremely high kurtosis. The high kurtosis implies that in a given year, most
individuals experience very small earnings changes, and a nonnegligible number
experience very large changes. Second, these deviations from nonnormality vary
significantly both over the life cycle and with the earnings level of individuals. We
also estimate impulse response functions and find important asymmetries: the large
positive earnings changes of high-income individuals are quite transitory, whereas
large negative changes are very persistent; the opposite is true for low-income indi-
viduals. We then estimate econometric processes for earnings dynamics by targeting
these rich sets of moments, which allows us to link facts on earnings “changes” to
underlying “shocks.” We solve and simulate a life-cycle consumption-savings model
using the resulting process. The idiosyncratic income fluctuations we document
generate large welfare costs, and the implications for wealth inequality and partial
insurance differ from those of a Gaussian process in important ways.
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1 Introduction

This year about four million young Americans will enter the labor market for the
first time. Over the next 40 years, each of these individuals will go through their unique
adventure in the labor market, involving a series of surprises—finding an attractive
career, being offered a dream job, getting promotions and salary raises, and so on—as
well as disappointments—experiencing unemployment, failing in one career and moving
on to another one, suffering health shocks, and so on. These events will vary not only in
their initial significance (upon impact) but also in how durable their effects turn out to
be in the long run.

An enduring question for economists is whether these wide-ranging labor market his-
tories, experienced by a diverse set of individuals, display sufficiently simple regularities
that would allow researchers to characterize some general properties of earnings dynam-
ics over the life cycle. Despite a vast body of research since the 1970s, it is fair to say
that many aspects of this question remain open. For example, what does the probability
distribution of earnings shocks look like? Is it more or less symmetric, or is it skewed
one way? More generally, how well is it approximated by a lognormal distribution, an
assumption often made out of convenience? And, perhaps more important, how do these
properties differ among low- and high-income workers or change over the life cycle? A
host of questions also pertain to the dynamics of earnings. For example, how sensible
is it to think of a single persistence parameter to characterize the durability of earnings
shocks? Do positive shocks exhibit persistence that is different from negative shocks?
Clearly, we can add many more questions to this list, but we have to stop at some point.
If so, which of these many properties of earnings shocks are the most critical in terms of
their economic importance and therefore should be included in this short list, and which
are of second-order importance?

This paper aims to answer these questions by characterizing the most salient aspects
of life-cycle earnings dynamics using a large and confidential panel data set from the U.S.
Social Security Administration covering 1978 to 2013. The substantial sample size allows
us to employ a fully nonparametric approach and take what amounts to high-resolution
pictures of individual earnings histories.1

1In this paper, we focus on the earnings dynamics of men for comparability to earlier work. However,
we have replicated the analysis in this paper for women and found qualitatively very similar patterns.
These results are reported in an online appendix that is available from the authors’ websites.

1



In deciding what aspects of the earnings data to focus on, we were motivated by
a growing body of theoretical work (reviewed in the next section), which attributes a
central role to skewness and kurtosis of economic variables for questions ranging from
the effects of monetary policy to optimal taxation, and from the determinants of wealth
inequality to asset prices. Therefore, we focus on the first four moments of earnings
changes over the life cycle. This analysis reaches two broad conclusions. First, the dis-
tribution of individual earnings growth displays important deviations from lognormality.
Second, the magnitude of these deviations (as well as a host of other statistical properties
of earnings growth) varies greatly both over the life cycle and with the earnings level
of individuals. Under this broad umbrella of “nonnormality and life-cycle variation,” we
establish four sets of empirical results.

First, earnings growth is negatively skewed, and this skewness becomes more severe as
individuals get older or their earnings increase (or both). Furthermore, this increasing
negativity is entirely due to upside earnings moves becoming smaller from ages 25 to
45, and to increasing “disaster” risk (i.e., the risk of a sharp fall in earnings) after age
50. Although these implications may appear quite plausible, they are not captured by
a lognormal specification, which implies zero skewness. (It should be stressed that the
nonzero skewness of earnings levels is well known since at least Pareto (1897), who
documented that both earnings and log earnings are right-skewed—see Neal and Rosen
(2000) for a survey. The analysis of this paper is focused on earnings changes—not
levels—and with the few exceptions discussed in the next section, far less is known
about its higher order moments.)

Second, earnings growth displays very high kurtosis. What kurtosis measures is most
easily understood by looking at the histogram of log earnings changes, shown in Figure
1 (left panel: annual change; right panel: five-year change). Notice the sharpness in
the peak of the empirical density, how little mass there is on the “shoulders” (i.e., the
region around ±�), and how long the tails are compared with a normal density chosen
to have the same standard deviation as in the data. Thus, there are far more people
with very small earnings changes in the data compared with what would be predicted
by a normal density. Furthermore, this average kurtosis masks significant heterogeneity
across individuals by age and earnings: prime-age males with earnings of $100,000 (in
2010 dollars) face annual earnings growth rates with a kurtosis coefficient as high as 30,
whereas young workers with earnings of $10,000 face a kurtosis of only 5 (relative to a
Gaussian distribution, which has a kurtosis of 3).
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Figure 1 – Histogram of Log Earnings Changes. Note: The first year t is 1997, and the data
are for all workers in the base sample defined in Section 2.

Third, we characterize the dynamics of earnings shocks by estimating nonparametric
impulse response functions conditional on the recent earnings of individuals and on the
size of the shock that hits them. We find two types of asymmetries. One, fixing the
shock size, positive shocks to high-earnings individuals are quite transitory, whereas
negative shocks are very persistent; the opposite is true for low-earnings individuals.
Two, fixing the earnings level of individuals, the strength of mean reversion differs by
the size of the shock: large shocks tend to be much more transitory than small shocks.
To our knowledge, both of these findings are new in the literature. These kinds of
asymmetries are hard to detect via the standard approach in the literature, which relies
on the autocovariance (i.e., second moment) matrix of earnings.2

Fourth, there is a strong positive relationship between the level of lifetime earnings
and how much earnings grow over the life cycle. For example, the median individual by
lifetime earnings experiences an earnings growth of 60% from ages 25 to 55, whereas for
individuals in the 95th percentile, this figure is 380%; for those in the top 1 percent, this
figure is almost 2600% (or 26-fold!).3

While the nonparametric approach (Sections 3–5) allows us to establish key features
of earnings dynamics in a robust fashion, a tractable parametric process is indispensable

2These asymmetries are difficult to detect because a covariance lumps together all sorts of earnings
changes—large, small, positive, and negative—into a single statistic.

3A positive relationship between lifetime earnings and life-cycle earnings growth is to be expected
(since, all else equal, fast earnings growth will lead to higher lifetime earnings). What is surprising is
the large magnitudes involved.
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for two reasons: (i) it allows us to connect earnings changes to underlying innovations
or shocks to earnings,4 and (ii) it allows us to conduct quantitative economic analyses
in a straightforward manner. Therefore, in Section 6, we estimate a rich-yet-tractable
stochastic process for earnings dynamics by targeting the four sets of empirical moments
described above.5 The two key features of this process are (i) nontrivial higher-order mo-
ments and (ii) nonlinear shock accumulation over time. Specifically, it features the sum
of two AR(1) processes with normal mixture innovations as well as long-term nonem-
ployment shocks, whose probabilities vary by age and earnings levels. This structure
turns out to be important for matching the rich variation in higher-order moments as
well as the asymmetric mean reversion patterns we observe in the data.

Using the estimated earnings process, in Section 7 we revisit four important questions
in the incomplete markets literature. To this end, we first embed the estimated stochastic
process into a life-cycle consumption savings model (and show that this can be done
relatively straightforwardly). We then establish four results about how the implications
of the estimated process differs from those of the more familiar Gaussian process (with
the same variance): (i) the welfare costs of idiosyncratic fluctuations are about two to
three times higher, reaching as high as 25% to 40% of lifetime consumption; (ii) wealth
inequality is higher, but not high enough to match the right tail observed in the data; (iii)
caution must be exercised in measuring the degree of partial insurance because different
approaches yield conflicting results under nonnormality; and (iv) consumption growth
displays strong higher-order moments—negative skewness and excess kurtosis—as well
as higher volatility. These results show that accounting for higher-order moments of
earnings dynamics can have a first-order effect on some important economic questions,
and they invite more work in order to understand its implications in other settings.

4Although we follow the general practice in the literature of referring to these innovations as income
“shocks,” individuals are likely to have more information about these changes than what we—as econo-
metricians—can identify from earnings data alone. Separating expected changes from unexpected ones
requires either survey data on expectations (e.g., Pistaferri (2003)) or data on economic choices (e.g.,
Cunha et al. (2005) and Guvenen and Smith (2014)). Tackling this important but difficult question is
beyond the scope of this paper, so we leave it for future research.

5The nonparametric analysis yields more than 10,000 empirical moments of individual earnings data,
which are made available for download as an Excel file (from the authors’ websites) to enable researchers
to estimate their preferred specification(s).
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Related Literature

Since its inception in the late 1970s,6 the earnings dynamics literature has worked
with the implicit or explicit assumption of a Gaussian framework, thereby making no
use of higher-order moments beyond the variance-covariance matrix. One of the few
exceptions is an important paper by Geweke and Keane (2000), who emphasize the
non-Gaussian nature of earnings shocks and fit a normal mixture model to earnings
innovations. More recently, Bonhomme and Robin (2010) analyze French earnings data
over short panels and model the transitory component as a mixture of normals and the
dependence patterns over time using a copula model. They find the distribution of this
transitory component to be left skewed and leptokurtic. In this paper, we go beyond the
overall distribution and find substantial variation in the degree of nonnormality with age
and earnings levels. Guvenen et al. (2014b) also documented the negative skewness of
earnings changes but abstracted completely from life cycle variation, instead focusing on
business cycle patterns in skewness. Furthermore, in this paper, the impulse response
analysis shows the need for a different persistence parameter for large and small shocks,
which is better captured as a mixture of two AR(1) processes—a step beyond the normal
mixture model.

Incorporating higher-order moments of earnings dynamics into economic models is
still in its infancy. Guvenen et al. (2014b) document that the skewness of individual in-
come shocks becomes more negative in recessions (i.e., skewness is procyclical), whereas
the variance is acyclical. Building on this observation, Constantinides and Ghosh (2016)
and Schmidt (2016) show that an incomplete markets asset pricing model with procycli-
cal skewness generates plausible asset pricing implications, and McKay (2014) studies
aggregate consumption dynamics in a business cycle model that is calibrated to match
these skewness fluctuations. Turning to fiscal policy, Golosov et al. (2016) show that
using an earnings process with negative skewness and excess kurtosis (targeting the em-
pirical moments reported in this paper) implies a marginal tax rate on labor earnings for
top earners that is substantially higher than under a traditional calibration with Gaus-
sian shocks with the same variance. Similarly, Kaplan et al. (2016) introduce leptokurtic
earnings growth into a New Keynesian model with household heterogeneity. They show
that excess kurtosis has important effects on the monetary transmission mechanism when
calibrated to empirical values from the present paper.

6Earliest contributions include Lillard and Willis (1978) and MaCurdy (1982), among others.
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Our work is related to some important recent contributions. Altonji et al. (2013)
estimate a joint process for earnings, wages, hours, and job changes, targeting a rich set
of moments via indirect inference. Browning et al. (2010) also employ indirect inference to
estimate an earnings process featuring “lots of heterogeneity” (as they call it). However,
neither paper explicitly focuses on higher-order moments or their life-cycle evolution. The
latter paper does model heterogeneity across individuals in innovation variances, as do
we, and finds a lot of heterogeneity along that dimension in the data. In contemporaneous
work, Arellano et al. (2016) also explore differences in the mean-reversion patterns of
earnings shocks across households that differ in their earnings histories. Using data from
the Panel Study of Income Dynamics (PSID), they find asymmetries in mean reversion
that are consistent with those that we document in Section 4.

The analysis of consumption-savings decisions in the presence of higher-order income
risk has also been conducted previously in Wang (2007), and recently in Wang et al.
(2016) and De Nardi et al. (2016). Our analysis complements these papers by embedding
a very general stochastic process (complete with age and income dependent shocks) with
minimal modifications into a life-cycle model and analyzing a range of its properties.

2 Data

The data used in this paper are drawn from the Master Earnings File (MEF) of the
U.S. Social Security Administration (SSA). Starting in 1978, the MEF combines various
databases available to the SSA in one master file. For our purposes, the most important
of these variables include wage/salary earnings from employees’ W-2 forms (for each job
held by the employee during the year), self-employment income (obtained from IRS tax
forms—in particular, Schedule SE), as well as various demographics (date of birth, sex,
and race). In this paper, we focus on total annual labor earnings, which is the sum
of total annual wage/salary income (summed across all jobs) plus the labor portion of
self-employment income.7

Wage earnings are not top coded throughout our sample, whereas self-employment in-
come was top coded at the SSA taxable limit until 1994. Although this top coding affects
only a small number of individuals who make substantial income from self-employment,
we restrict our analysis to the 1994–2013 period to ensure that our analysis of higher-
order moments is not affected by this issue. The only exception is Section 5, where we

7The labor portion of self-employment income is taken to be 2/3, which is a fairly standard value.
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analyze average income growth over the life cycle (i.e., the first moment), and therefore a
longer time series becomes essential. Thus, in that section, we use data from 1981 to 2013
and impute self-employment income above the top code for years before 1994.8 Finally,
nominal earnings records are converted into real values using the personal consumption
expenditure (PCE) deflator, taking 2010 as the base year. Further details of our sample
and variable construction can be found in Appendix A.

Sample Selection.

Our base sample is a revolving panel that maximizes sample size (important for precise
computation of higher-order moments for finely defined groups) and allows a stable age
structure over time. It is constructed as follows. First, an individual-year earnings
observation must satisfy two criteria to be admissible for that year: the individual (i)
must be between 25 and 60 years old (working age) and (ii) must have participated in
the labor market—that is, have earnings above Ymin,t. The threshold Ymin,t is chosen as
the annual earnings level corresponding to one quarter of full-time work (13 weeks at 40
hours per week) at half of the legal minimum wage, which is approximately $1,885 in
2010. This condition is fairly standard in the income dynamics literature and ensures
that we select individuals with a reasonably strong labor market attachment (see, e.g.,
Abowd and Card (1989) and Meghir and Pistaferri (2004)).

For each year t, we will construct moments by conditioning on individuals’ average
earnings from t � 5 to t � 1 and compute statistics based on income changes from year
t to t + k (k = 1, 5); see Figure 2. The revolving panel for year t selects individuals
for which this conditioning can be done in a sensible way. Thus, an individual is in the
base sample if he is admissible in t� 1 and in at least two more years between t� 5 and
t�2. This ensures that the individual was actively in the labor market and has earnings
records from which we can compute a measure of average recent earnings, as we describe
in a moment. For some statistics, such as change from y

t

to y

t+k

, we also require the
individual to be admissible in t and t+ k. This is specified later below.

Variable Construction.

Recent Earnings. We now define a measure of what we call “recent earnings,” a term
used throughout the paper. Let ỹ

i

t,h

⌘ log( ˜Y i

t,h

) denote the log earnings of individual

8Details of this imputation are provided in Appendix A.1, where we also show that only a small
number of individuals are affected by this imputation (those who had very high self-employment earnings
before 1994 or when the cohort was younger than age 41), so the effect on our results is minimal.

7



Figure 2 – Timeline for Rolling Panel Construction

i who is h years old in year t. (We will suppress dependence on age whenever it does
not create confusion.) For a given worker, we compute his average earnings between
years t� 1 and t� 5. We set earnings observations below Ymin,t to the threshold for this
computation. We also control for age effects as follows. We first estimate age dummies,
denoted d

h

, by regressing log individual earnings on a full set of age and (year-of-birth)
cohort dummies. We then construct five-year average earnings in the population from
ages h � 5 to h � 1:

P5
s=1 exp(d

h�s

). Finally, we normalize the worker’s average past
earnings with this measure to clean age effects. Thus, our measure of recent earnings
(hereafter, RE) is

¯

Y

i

t�1 ⌘
P5

s=1
˜

Y

i

t�s,h�s

.

P5
s=1 exp(d

h�s

)

.

In the next section, we will group individuals by age and by ¯

Y

i

t�1 to investigate how
the dynamics of earnings vary over the life cycle and by earnings levels.

Growth Rate Measures. We consider two measures of earnings growth rates, each
with its own distinct advantages. Let yi

t

= ỹ

i

t,h

�d

h

denote log earnings net of age effects.
The first growth measure is the familiar

log change: �

k

y

i

t

⌘ (y

i

t+k,h+k

� y

i

t,h

) = (ỹ

i

t+k,h+k

� d

h+k

)� (ỹ

i

t,h

� d

h

).

This measure is well known, and its higher-order moments for a lognormal distribu-
tion are familiar to readers (zero skewness and a kurtosis coefficient of 3). While this
familiarity makes it a good choice for the nonparametric and descriptive analysis, it also
has a well-known drawback: because log of zero is �1, we need to drop observations
close to zero so as to obtain sensible statistics. Thus, when we use �

k

y

i

t

to compute
a statistic, we drop individuals from the base sample whose data are not admissible
(earnings below Ymin,t) in t or t+ k. This not only forces us to ignore valuable informa-
tion in the extensive margin but also creates technical issues, by causing (little) jumps
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in the empirical moments as workers cycle in and out of the labor force, which creates
difficulties with the optimization of the objective function during estimation. For these
reasons, we borrow a second and closely related measure, which is commonly used in the
firm dynamics literature (see, e.g., Davis et al. (1996)) where firm entry and exit are key
margins and lead to the same difficulties with logs. The measure is

arc-percent change: �arcY
i

t,k

=

Y

i

t+k

� Y

i

t

�

Y

i

t+k

+ Y

i

t

�

/2

.

This measure allows computation of time differences even when the individual has zero
income in one of the two years, thereby also capturing the extensive margin of earnings
changes. As we discuss further below, the qualitative patterns we document are very
robust regardless of the measure we use. Because of its familiarity, we report the log
change measure in the descriptive analysis. In the estimation, we target the arc percent
change moments and report all the analogous figures with this measure in appendix B.2.

3 Cross-Sectional Moments of Earnings Growth

In this section, we analyze the second to fourth moments of five-year earnings growth
rates. Our focus on five-year (as opposed to one-year) growth rates is motivated by
their closer correspondence to persistent changes in earnings and hence their greater
significance for many economic questions. For completeness, we report the analogous
figures for one-year earnings changes in Appendix B.1, which show the same patterns
reported here for long-run changes. In Section 6, we will link these earnings “changes”
to underlying “shocks” or “innovations” to an earnings process by means of a parametric
estimation.

Our main focus is on how the moments of earnings growth vary with recent earnings
and age. To this end, we first group individuals in the base sample into five-year age
bins based on their age in year t�1: 25–29, 30–34,..., 50–54, and 55–60. For each year t,
we group individuals based on their age and recent earnings as of time t� 1 (RE: ¯

Y

i

t�1).
If these groupings are done at a sufficiently fine level, we can think of all individuals
within a given age/RE group to be ex ante identical (or at least very similar). Then,
for each such group, we can compute the cross-sectional moments of earnings changes
between t and t + 5 , which can then be viewed as corresponding to the properties of
earnings changes that individuals within each bin can expect to face. This approach has
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Figure 3 – Standard Deviation of Five-Year Earnings Growth

(a) Second Standardized Moment
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the advantage that we can compute higher-order moments precisely as the average bin
contains more than 100,000 individuals. (Table A.1 in Appendix A reports sample size
statistics.)

3.1 Second Moment: Variance

Figure 3a plots the standard deviation of five-year earnings growth by age and recent
earnings (hereafter, RE) groups. Consistent with our nonparametric focus, we also report
a quantile-based dispersion measure—the log difference between the 90th and 10th per-
centiles (P90 and P10, respectively) of earnings change—denoted P90-P10, in the right
panel (Figure 3b). By both measures, and for every age group, there is a pronounced
U-shape pattern by RE levels, implying that earnings changes are less dispersed for indi-
viduals with higher RE up to about the 90th percentile (along the x-axis). This pattern
reverts itself inside the top 10% as dispersion increases rapidly with recent earnings.
Further, over the life cycle, the dispersion of earnings changes declines monotonically up
to about age 50 (with the exception of the very top earners) and then rises slightly for
middle- to high-income individuals from ages 50 to 55.9

The life-cycle pattern is quite different for top earners, who experience a monotonic
increase in dispersion of shocks over the life cycle. In particular, individuals at the 95th

9A similar pattern has been found by Baker and Solon (2003) using administrative data in Canada
and by Karahan and Ozkan (2013) using data from the Panel Study of Income Dynamics.
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Figure 4 – Skewness of Five-Year Earnings Growth

(a) Third Standardized Moment
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(b) Kelley Measure
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percentile of the RE distribution experience an increase from 0.71 in the youngest age
group up to 0.92 in the oldest group (50–54), and those in the top 1% experience a larger
increase from 1.05 in the first age group up to 1.31 in the oldest. Therefore, we conclude
that the lower 95 percentiles and the top 5 percentiles display patterns with age and
recent earnings that are the opposite of each other. The same theme will emerge again
in our analysis of higher-order moments.

3.2 Third Moment: Skewness (or Asymmetry)

Lognormality implies that the skewness of (log) earnings growth is zero. Figure 4a
plots the skewness, measured here as the third standardized moment of five-year earnings
growth.10 Two points should be observed. First, earnings changes are negatively skewed
at every stage of the life cycle and for (almost) all earnings groups. Second, skewness
is increasingly more negative for individuals with higher earnings and as individuals get
older. Thus, it seems that the higher an individual’s current earnings, the more room
he has to fall and the less room he has left to move up. Curiously, and as was the case
with the standard deviation, the life-cycle pattern in skewness becomes weaker (skewness
changes less with age) at the very top of the earnings distribution.

10More precisely, for random variable X, with mean µ and standard deviation �, the third standard-
ized moment is E

⇥

(X � µ)

3
⇤

/�

3
.
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Another measure of asymmetry is provided by Kelley (1947) measure of skewness:

SK =

(P90� P50)� (P50� P10)

P90� P10

. (1)

Basically, SK measures the relative fractions of the overall dispersion (P90–P10) ac-
counted for by the upper and lower tails. An appealing feature of Kelley’s skewness is
that it is bounded between �1 and +1, and a particular value has a simple interpretation.
To see this, rearrange (1) to get

P90� P50

P90� P10

= 0.5 +

SK

2

.

Thus, SK <0 implies that the lower tail (P50-P10) is longer than the upper tail (P90-
P50), indicating negative skewness. Another property of Kelley’s measure is that it is
robust to extremes (above the 90th or below the 10th percentile of the shock distribution).
Instead, it captures the shift in the weight distribution in the middling section of a
distribution, whereas the third moment also puts a large weight on the relative lengths
of each tail. (We examine the tails in more detail in the next subsection.) Figure 4b
plots Kelley’s skewness, which reveals essentially the same pattern as with the third
moment. Furthermore, the magnitude of skewness is substantial. For example, a Kelley
measure of –0.40 (for 45–49 year old workers at the 80th percentile of the RE distribution)
implies that the P90-P50 accounts for 30% of P90-P10, whereas P50-P10 accounts for
the remaining 70%, far removed from the 50-50 distribution implied by a lognormal
distribution.

A natural follow up question is whether skewness becomes more negative over the
life cycle because of a compression of the upper tail (fewer opportunities to move up) or
because of an expansion in the lower tail (increasing risk of income declines). This can
be answered by looking at the levels of the P90-P50 and P50-P10 separately over the life
cycle, which is plotted in Figure A.15 in Appendix B.3 to save space here. The figure
shows that, from ages 25 to 50, the upper tail of the distribution compresses strongly,
whereas after age 50 the bottom end starts opening up (i.e., chances of a large drop
increase). As before, top earners are an exception to this pattern: the upper tail does
not compress with age, but the bottom end opens up monotonically with age.
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Figure 5 – Kurtosis of Five-Year Earnings Growth

(a) Fourth Standardized Moment
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(b) Crow-Siddiqui Measure

0  20 40 60 80 100

Percentiles of Recent Earnings (RE) Distribution

2

4

6

8

10

C
ro
w
s
K
u
rt
os
is

of
(y

t+
5
−

y
t)

3.3 Fourth Moment: Kurtosis (Peakedness and Tailedness)

It is useful to begin by discussing what kurtosis measures. A useful interpretation
has been suggested by Moors (1986), who described excess kurtosis as the tendency
of a probability distribution to stay away from µ ± �. This is consistent with how a
distribution with excess kurtosis often looks like: a sharp/pointy center, long tails, and
little mass near µ ± �. A corollary to this description is that with excess kurtosis, the
usual way we think about standard deviation—as representing the size of the typical
earnings change—is not very useful: most realizations will be either close to the center
(median) or in the tails. One familiar measure of kurtosis is the fourth standardized
moment of the data: E((X � µ)

4
)/�

4
. For the same reasons given for dispersion and

skewness above, a nonparametric quantile-based measure is also desirable. One useful
statistic is the Crow-Siddiqui measure (Crow and Siddiqui (1967)):

C-S =

P97.5� P2.5

P75� P25

,

which is equal to 2.91 for a Gaussian distribution.

With these definitions in mind, notice in Figure 5 that both measures of kurtosis
increase monotonically with recent earnings up to the 80th to 90th percentiles for all age
groups. That is, high earners experience even smaller changes of either sign, with few
experiencing very large changes. Second, kurtosis increases with age for all RE levels
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Table I – Fraction of Individuals with Selected Ranges of Log Earnings Change

Prob(|yi
t+1 � y

i

t

| < x)
x : Data⇤ N (0, 0.51) Ratio
0.05 0.31 0.08 3.88
0.10 0.49 0.15 3.27
0.20 0.67 0.30 2.23
0.50 0.83 0.67 1.24
1.00 0.93 0.95 0.98

Notes: ⇤The empirical distribution used in this calculation is for 1997-98, the same as in Figure 1.
†The intervals are defined as follows: “Center” refers to the area inside the first intersection between the
two densities in Figure 1: [�0.144, 0.194]. “Tails” refer to the areas outside the intersection point at the
tails: (�1,�1.278] [ [1.121,1). “Shoulders” refer to the remaining areas of the densities.

Figure 6 – Double-Pareto Tails of the U.S. Annual Earnings Growth Distribution
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except the top 5%. Furthermore, the peak level of kurtosis ranges from a low of 12
for the youngest group all the way up to 16 for the middle-age group (40–54). The
Crow-Siddiqui measure also shows very high kurtosis values, indicating that the fourth
moment result is not driven by outliers (in the top and bottom 2.5% of the distribution,
which is ignored by the Crow-Siddiqui measure).

To provide a familiar interpretation of kurtosis values, we calculate measures of con-
centration. Table I reports the fraction of individuals experiencing a log absolute earnings
change of less than a threshold x = 0.05, 0.10, and so on, under alternative assumptions
about the data-generating process. If data were drawn from a Gaussian density with a
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standard deviation of 0.51 (the unconditional value for the whole sample), only 8% of
individuals would experience an earnings change of less than 5%. The true fraction in
the data is 31%. Similarly, the Gaussian density predicts a fraction of 15% when the
threshold is 0.10, whereas the true fraction is 49%, and so on. We can also compute the
probability of an extreme event (not reported in the table), which we define as drawing
a shock larger than 150 log points (an almost fivefold increase, or an 80% drop). This
happens approximately once in a lifetime in the data—or a 2.5% annual chance—whereas
this probability is 6.3 times smaller under a normal distribution.

This high likelihood of extreme events motivates us to take a closer look at the
tails of the earnings growth distribution. Figure 6 plots the empirical log density of
annual earnings growth versus the Gaussian density.11 The lognormal density is an
exact quadratic, whereas the data display a more complex pattern. Two points are worth
noting. One, the data distribution has much thicker and longer tails compared with a
normal distribution, and the tails decline almost linearly, implying a Pareto distribution
at both ends, with significant weight at extremes.12 Two, the tails are asymmetric, with
the left tail declining much more slowly than the right, contributing to the negative third
moment documented above. In fact, fitting linear regression lines to each tail (in the
regions ±[1, 4] ) yields a tail index of 1.18 for the right tail and 0.40 for the left tail—the
latter showing especially high thickness. It is worth stressing that while the Pareto tail in
the earnings levels distribution is well known—indeed, going back to Pareto (1897)—here
the two Pareto tails emerge in the earnings growth distribution. To our knowledge, the
present paper is the first to document this empirical fact.

Overall, these findings show that earnings changes in the U.S. data exhibit important
deviations from lognormality, and the extent of these deviations vary both over the life
cycle and with the income level of individuals. In Section 7, we will investigate the
implications of these features for a variety of economic questions in the context of a
consumption-savings model.

3.4 Job-Stayers and Job-Switchers

Economists have documented important differences between the earnings changes
that occur during an employment relationship and those that occur when workers switch
jobs (see, e.g., Topel and Ward (1992), Low et al. (2010) and Bagger et al. (2014)).

11This is the same as the left panel of Figure 1 but with the y-axis now in logs.
12A double-Pareto distribution is one in which both tails are Pareto with possibly different tail indices.
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While this literature has focused on the first moment (i.e., the average wage change),
here, in the same spirit, we examine how the higher-order moments of earnings growth
vary between job-stayers and job-switchers.

The SSA data set contains a unique employer identification number (EIN) for each job
that a worker holds in a given year, which makes this analysis feasible. At the same time,
the annual frequency of the data, together with the fact that some workers hold multiple
jobs concurrently, poses a challenge for a precise identification of job-stayers and job-
switchers. We have explored several plausible definitions and found qualitatively similar
results. Here, we describe one reasonable classification. A worker is said to be a “job-
stayer” between years t and t+ 1 if a given EIN provides the largest share of his annual
earnings (out of all his EINs in that year) in years t� 1 through t + 2, and if the same
EIN provides at least 80% of his total annual earnings in years t and t + 1. A worker
is defined as a “job-switcher” if he is not a job-stayer.13 The probability of staying with
the same employer increases with recent earnings and age (Figure A.19).

Figure 7 plots the quantile-based 2nd to 4th moments of earnings growth for stayers
and switchers. A couple of remarks are in order. First, the age patterns are broadly
the same across switchers and stayers: P90-10 declines slightly, skewness becomes more
negative, and kurtosis increases for both job-stayers and job-switchers over the life cycle.
Second, and more important, job-stayers (i) face a dispersion of earnings growth that is
much smaller than that for job-switchers (about one-third for median-income workers);
(ii) face shocks that have zero or slightly positive skewness as opposed to job-switchers,
who face shocks that are very negatively skewed; and (iii) experience shocks with higher
kurtosis than that for job-switchers, which is especially true for low RE workers. Figure
A.20 plots the analogous graphs for annual earnings growth, and Figure A.21 plots the
2nd to 4th centralized moments, all confirming these conclusions.

These large and systematic differences in the higher-order moments between stayers
and switchers raise the question of whether existing models of worker flows across jobs are
consistent with these patterns. In ongoing work, Hubmer (2016) and Kapon et al. (2016)
explore the ability of various frameworks (such as an Aiyagari (1994) model augmented

13Because the self employed (i.e., sole proprietors in our data set) do not have employers, we cannot
check these criteria for those workers. We have experimented with treating them as switchers (the
idea being that some of these individuals have less well defined employment boundaries) or as stayers
and found that it made little difference. The results in this section follow the former approach: that
is, a worker is classified as a switcher if more than 10% of his total annual earnings come from self
employment in t or t+ 1.
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Figure 7 – Higher-Order Moments of Earnings Growth: Stayers vs Switchers
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(b) Kelley’s Skewness
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(c) Crow-Siddiqui Kurtosis
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with search frictions or versions of the seminal Postel-Vinay and Robin (2002) model)
to generate these patterns.

4 Dynamics of Earnings

Another key dimension of life-cycle earnings risk is the persistence of earnings changes.
Typically, this persistence is modeled as an AR(1) process or a low-order ARMA process
(typically, ARMA(1,1)), and the persistence parameter is pinned down by the rate of
decline of autocovariances with the lag order. The AR(1) structure, for example, pre-
dicts a geometric decline and the rate of decline is directly given by the mean reversion
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parameter. While this approach might be appropriate in survey data with small sample
sizes, it imposes restrictions on the data that might be too strong, such as the uniformity
of mean reversion for positive and negative shocks, for large and small shocks, and so on.
Here, the substantial sample size allows us to characterize persistence without making
parametric assumptions.

To reduce the number of graphs to a manageable level, we aggregate individuals
across demographic groups. First, we combine the first two age groups (ages 25 to 34)
into “young workers” and the next three groups (ages 35 to 50) into “prime-age workers.”
Then, for each group, we rank and group individuals based on their average earnings
from t � 5 to t � 1, and then within each group, we rank and group again by the size
of the earnings change between t� 1 and t. Hence, all individuals within a given group
(obtained by crossing the two conditions) have the same average earnings up to time
t � 1 and experience the same earnings “shock” from t � 1 to t. For each such group
of individuals, we then compute the average change in log earnings from t to t + k, for
k = 1, 2, 3, 5, 10.

14

4.1 Impulse Response Functions Conditional on Recent Earnings

Figure 8a plots the “shock,” yi
t

�y

i

t�1, on the x -axis and the fraction of each shock that
has mean-reverted, yi

t+k

� y

i

t

, on the y-axis for the median RE group. This graphical
construct contains the same information as a standard impulse response function but
allows us to see the heterogeneous mean reversion patterns more clearly.

Several remarks are in order. First, the degree of mean reversion varies with the size
of the shock, with much stronger mean reversion in t + 1 for large shocks and smaller
reversion for smaller shocks. Furthermore, even at the 10-year horizon, a nonnegligible
fraction of the shocks’ effect is still present, indicating a very persistent component to
these shocks. Second, negative earnings changes tend to be less persistent than positive
earnings changes for median-income workers. For example, a worker whose earnings rise
by 100 log points between t � 1 and t loses about 50% of this gain in the following 10

14Specifically, we construct 21 groups based on their RE percentiles: 1–5, 6–10, 11–15, . . . , 86–90,
91–95, 96–99, 100. Then, we construct 20 equally divided groups based on the percentiles of the shock,
y

i
t � y

i
t�1: percentiles 1–5, 6–10, 11–15, . . . , 91–95, 96–100. Therefore, for every year t, we have 2 age

groups, 21 RE groups, and 20 groups for shock size (for a total of 840 groups). As before, we construct
these groups separately for each t and assign workers based on these averages. Then, for workers in
each group, we compute the average of log k-year earnings growth, E

h

y

i
t+k � y

i
t|Y

i
t�1, y

i
t � y

i
t�1

i

, for
k = 1, 2, 3, 5, 10.
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years. Almost all of this mean reversion happens after one year, implying that whatever
mean reversion there is happens very quickly. Turning to earnings losses: a worker whose
earnings fall by 100 log points recovers one-third of that loss by t+ 1 and recovers more
than two-thirds of the total within 10 years. Moreover, unlike with positive shocks, the
recovery (hence mean reversion) is more gradual in response to negative shocks.

Second, the degree of mean reversion varies with the magnitude of earnings shocks.
This is evident in Figure 8a, where small shocks (i.e., those less than 10 log points in
absolute value) look very persistent, whereas there is substantial mean reversion following
larger earnings changes. A univariate autoregressive process with a single persistence
parameter will fail to capture this behavior. In the next section, we will allow for multiple
AR(1) processes to accommodate this variation in persistence by shock size.

The next two panels (Figures 8b and 8c) plot the analogous impulse response func-
tions for low-income (i.e., Y

t�1 2 P6 � P10) and high-income (P91 � P95) workers.
For low-income individuals, negative shocks mean-revert much more quickly, whereas
positive shocks are more persistent than before. The opposite is true for high-income
individuals.

We now extend the results to the entire distribution of recent earnings. To accommo-
date more income groups, we focus on a fixed horizon, 10 years, and plot the cumulative
mean reversion from t to t + 10 for the 6 RE groups in Figure 8d. Starting from the
lowest RE group (those individuals in the bottom 5% of the recent earnings distribution),
notice that negative shocks are transitory, with an almost 75% mean reversion rate at
the 10-year horizon. But positive shocks are quite persistent, with only about a 25%
mean reversion at the same horizon. As we move up the RE distribution, the positive
and negative branches of each graph start rotating in opposite directions, so that for
the highest RE group, we have the opposite pattern: only 20 to 25% of negative shocks
mean-revert at the 10-year horizon, whereas around 80% of positive shocks mean-revert
at the same horizon. We refer to this shape as the “butterfly pattern.”

5 Life-Cycle Income Growth

We conclude our analysis of life-cycle earnings with the first moment—average earn-
ings growth—and examine how it varies over the life cycle and, for reasons that will
become clear in a moment, across groups of individuals that differ in their lifetime earn-
ings (and not recent earnings). For this analysis, we leverage the long panel dimension
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Figure 8 – Impulse Responses, Prime-Age Workers

(a) Median-Income Workers
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(c) High-Income Workers

-2 -1 0 1 2

yt − yt−1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
t+

1
0
−

y
t

1-5%

20-25%

45-50%

70-75%

95-99%

100%

(d) Butterfly Pattern

Notes: Median-, low-, and high-income in panels A, B, and C refer to workers with,
respectively, Y t�1 in (P45� P55), (P6� P10), and (P91� P95).
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Figure 9 – Life-Cycle Profile of Average Log Earnings
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of our data set and follow individuals over their entire working life. To this end, we
employ a balanced panel that selects all individuals (i) who are between ages 25 and
28 in 1981 and are still alive by 2013 and (ii) have annual earnings above a minimum
threshold, denoted Ymin,t, for at least 15 of these years. The first condition ensures that
we have 33-year earnings histories between ages 25 and 60 for each individual (which
might include years with zero earnings). These two conditions are the same as in the
base sample, but now extended to cover the entire life cycle.

To provide a benchmark, we estimate the average life-cycle profile of log earnings by
regressing log individual earnings on a full set of age and (year-of-birth) cohort dum-
mies.15 The estimated age dummies are plotted as circles in Figure 9 and represent the
average life-cycle profile of log earnings. It has the usual hump-shaped pattern that
peaks around age 50.16

It is well understood that the steepness of the life-cycle income profile (i.e., the
cumulative growth in income from ages 25 to 55) matters greatly for many economic
questions, because it is a strong determinant of borrowing and saving motives. In Figure
9, this cumulative growth is about 93 log points, which is about 154%. Notice that feeding
this life-cycle profile into a calibrated model will imply that the median individual in the

15This procedure is standard in the literature; see, e.g., Deaton and Paxson (1994) and Storesletten
et al. (2004).

16These age dummies turn out to be indistinguishable from a fourth-order polynomial in age:
yh = �0.0240 + 0.2013⇥ h� 0.6799⇥ h

2
+ 1.2222⇥ h

3
+ 9.4895⇥ h

4, where h = (age � 24)/10.
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Figure 10 – Life-Cycle Earnings Growth Rates, by Lifetime Earnings Group
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simulated sample experiences (on average) a rise of this magnitude from ages 25 to 55.
Is this implication consistent with what we see in the data? In other words, if we rank
male workers by their lifetime earnings, does the median worker in the United States
experience an earnings growth of approximately 154%?

To answer this question, we begin by computing lifetime earnings for each individual
as follows. We rank individuals based on their lifetime earnings, computed by summing
their earnings from ages 25 through 60. Earnings observations lower than Ymin,t are set
to this threshold. For individuals in a given lifetime earnings (hereafter, LE) percentile
group, denoted LEj, j = 1, 2, ..., 99, 100, we compute growth in average earnings between
any two ages h1 and h2 as log(Y

h2,j) � log(Y
h1,j), where Y

h,j

⌘ E(Y i

h

|i 2 LEj) and Y

i

h

for a given individual may be zero.

Figure 10 plots the results for h1 = 25 and h2 = 55. There are several takeaways.
First, individuals in the median LE group experience a growth rate of 60%, slightly more
than one-third of what was predicted by the profile in Figure 9. Second, we have to
look above LE80 to find an average growth rate of 154%. However, earnings growth
is very high for high-LE individuals, with those in the 95th percentile experiencing a
growth rate of 380% and those in the 99th percentile experiencing a massive growth rate
of 2600%. Although some of this variation could be expected because individuals with
high earnings growth are more likely to have high lifetime earnings, these magnitudes
are too large to be accounted for by that channel, as we show below.
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Figure 11 – Log Earnings Growth over Subperiods of Life Cycle

(a) By Decades of the Life Cycle
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(b) By Different Starting Ages
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Earnings Growth by Decades. How is earnings growth distributed over different
decades of the life cycle? Figure 11a answers this question by separately plotting growth
rates from ages 25 to 35, 35 to 45, and 45 to 55. The bulk of earnings growth happens
during the first decade. In fact, for the median LE group, average cumulative earnings
growth from ages 35 to 55 is only 9%. Second, with the exception of those in the top
20% by LE, all groups experience negative growth from ages 45 to 55. How do the results
change if we consider a later starting age? Figure 11b plots earnings growth starting at
age 30 (solid blue line) and 35 (dashed red line). As just mentioned, from ages 35 to 55,
the average cumulative growth rate is very low for all workers below L70. Top earners
still do well though, experiencing a rise of 226 log points (or 849%) from ages 30 to 55
and a rise of 128 log points (or 260%) from ages 35 to 55. Those at the bottom of the
LE distribution display the opposite pattern: average earnings drops by 34 log points
(or 29%) from ages 35 to 55.

6 Estimating Stochastic Processes for Earnings

With few exceptions, the earnings dynamics literature relies on the (often implicit)
assumption that earnings shocks can be approximated reasonably well with a lognor-
mal distribution. This assumption, combined with a linear time-series model to capture
the accumulation of such shocks, allowed researchers to focus their estimation to match

23



the covariance matrix (of log earnings), abstracting from higher-order moments.17 This
approach faces two difficulties. First, the empirical evidence documented in this paper
shows large deviations from lognormality, in which case the third and fourth moments
contain valuable information. Second, the covariance matrix estimation makes it diffi-
cult to select among alternative models of earnings risk, because it is difficult to judge
the relative importance—from an economic standpoint—of the covariances that a given
model matches well and those that it does not.

With these considerations in mind, we follow a different approach that relies on
matching the kinds of moments presented above.18 We believe that economists can more
easily judge whether or not each one of these moments is relevant for the economic
questions they have in hand. We conducted a battery of diagnostic tests on each set
of moments to get a better idea about what elementary components (e.g., persistent
shocks, normal mixtures, heterogeneous profiles, etc.) have the potential to generate
those features. We conducted similar diagnostic analyses on the other cross-sectional
moments (standard deviation, skewness, and kurtosis) as well as on impulse response
moments. The rich persistence pattern necessitated mixing multiple AR(1) processes,
whereas the variation in the second to fourth moments over the life cycle and with
earnings levels seemed impossible to match without introducing explicit dependence of
mixing probabilities on age and earnings. Therefore, we make these features part of our
benchmark.

6.1 A Flexible Stochastic Process

The most general econometric process we estimate has the following features: (i) a
heterogeneous income profiles (hereafter, HIP) component of linear form; (ii) a mixture
of two AR(1) processes,19 denoted by z1 and z2, where each component receives a new
innovation in a given year with probability p

j

2 [0, 1] for j = 1, 2; (iii) a nonemployment

17To be clear, GMM or minimum distance estimation that is used to match such moments does not
require the assumption of lognormality for consistency. But abstracting away from moments higher
than covariances is a reflection of the belief that higher-order moments do not contain independent
information, which relies on the lognormality assumption.

18This approach is in the spirit of Browning et al. (2010), Altonji et al. (2013), and Guvenen and
Smith (2014).

19Geweke and Keane (2007) study how regression models can be smoothly mixed, and our modeling
approach shares some similarities with their framework.
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shock ⌫; and (iv) an i.i.d. shock ". Here is the full specification:
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The term g (t) in (2) is a quadratic polynomial in age and captures the life-cycle
component of earnings that is common to all individuals. The random vector (↵

i

, �

i

) is
drawn from a multivariate normal distribution with zero mean and a covariance matrix to
be estimated.20 Each AR(1) component, z1 and z2, receives a shock drawn from a mixture
of a Gaussian distribution and a mass point chosen so that the innovations have zero
mean. Furthermore, we allow the variance of each innovation to be individual-specific,
with a lognormal distribution with mean �

j

and a standard deviation proportional to
e�

j

.21 We also allow for heterogeneity in the initial conditions of the persistent processes,
z

i

1,0 and z

i

2,0, given in equation (8).22 Since the specifications of z1 and z2 are the same
so far, we need an identifying assumption to distinguish between the two, so, without

20One possible source of heterogeneity in the growth rate, �i
, could be human capital accumulation

in the presence of ability heterogeneity. See, e.g., Huggett et al. (2011) and Guvenen et al. (2014a).
21Chamberlain and Hirano (1999) and Browning et al. (2010) find strong evidence of such hetero-

geneity. Our preliminary analysis also confirmed this prediction, which is why we allow for this feature.
Furthermore, such heterogeneity in innovation variances can also give rise to excess kurtosis in the cross-
sectional distribution of income changes, as we found in Section 3, even when each individual receives
Gaussian innovations. Thus, modeling this feature is important for understanding the determinants of
kurtosis we documented earlier.

22This specification allows the standard deviation of the initial condition to be proportional to the
individual-specific standard deviation �i

j .
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loss of generality, we impose ⇢1 < ⇢2. Finally, with probability p

i

⌫t

, an individual receives
a nonemployment shock (⌫

t

> 0) whose duration has an exponential distribution with
mean �, truncated at 1, the interpretation being of full year nonemployment (i.e., zero
annual income).

The age and income dependence of moments is captured by allowing the mixture
probabilities to depend on age and the persistent component of earnings (z1 + z2):23

p

i

jt

=

exp

�

⇠

i

j,t�1

�

1 + exp

�

⇠

i

j,t�1

�

, (9)

⇠

i

jt

= a

j

+ b

j

⇥ t+ c

j

⇥
�

z

i

1,t + z

i

2,t

�

+ d

j

⇥
�

z

i

1,t + z

i

2,t

�

⇥ t,

for j = 1, 2. The equation for p

⌫t

is the same as (9) but ⇠

i

j,t�1 is replaced with ⇠

i

jt

. This
completes the description of the stochastic process.

Estimation Procedure

We estimate the parameters of the stochastic process described by equations (2) to
(9) using the method of simulated moments (MSM). The empirical targets are: (i) the
standard deviation, skewness, and kurtosis of one-year and five-year earnings growth;
and (ii) moments describing the impulse response functions; and (iii) moments from
the life-cycle profile of average earnings. In addition, the within-cohort variance of log
earnings levels is a key dimension of the data that has been extensively studied in previous
research. For both completeness, and consistency with earlier work, we include these
variances (summarized in Figure A.18) as a fourth set of moments.

As discussed earlier, the descriptive analysis relied on log earnings changes because
of its familiarity and required us to drop individuals with low earnings—below Y min—in
year t or t + k. In the estimation, we target the same set of moments but this time
computed using arc-percent changes, which allows us to include individuals who enter
and exit market work. This way, the estimated income process will capture not only
income shocks in the intensive margin but also the nature and persistence of shocks that
move workers in and out of the labor market. The counterparts of all the figures in
Sections 3 and 4 using arc-percent change are reported in Appendix B.2. They exhibit
the same qualitative patterns as the log difference versions presented above, but their

23We have also considered an alternative specification where the innovation variances are functions
of earnings and age. After extensive experimentation with this formulation, we have found it to perform
very poorly.
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magnitudes capture the extensive margin too, allowing us to streamline the estimation
process. Appendix C contains the details about which moments are targeted, how they
are constructed, and the MSM objective function, and includes plots that show the
targeted cross-sectional and impulse response moments.

6.2 Results: Estimates of Stochastic Processes

Table II reports the estimation results. We begin with an overview of what the
specification in each column aims to capture and how these specifications fit various
moments. To save space here, we plot the fit of each specification to the moments we
target in Appendix C.3 (Figures A.25 and A.26).

Column (1) is the full specification and our benchmark process. It has the best fit
of all the specifications we have estimated. Each of the subsequent columns, except the
very last, eliminates only one feature from the benchmark so as to facilitate comparison.
For example, column (2) shuts down one of the AR(1) processes (z2 ⌘ 0) but keeps all
other features of the benchmark. The advantage of this specification is that it reduces
the number of state variables required for a dynamic programming model from 2 to
1. As seen in the bottom panel, this simplification comes at some cost—a worse fit to
the cross-sectional moments and impulse responses. However, relatively speaking this
deterioration is not nearly as bad as when we eliminate other features later on. So column
(2) can be viewed as a simplified benchmark. Column (3) eliminates the HIP component
(�i ⌘ 0) from the benchmark process. This leads to a worse fit as expected, but again
not dramatically so.

In Column (4), we eliminate the nonemployment shock (⌫
t

⌘ 0) from the benchmark,
which leads to a large jump in the objective value, indicating a significant deterioration
in the fit of the model, especially in cross-sectional and impulse response moments.
This shows that extensive margin shocks are an essential component of an empirically
plausible income process. In the next column (5), we eliminate the dependence of mixture
probabilities on past earnings, which shows an even worse deterioration in fit. This result
is perhaps not very surprising, given the large systematic variation with recent earnings
that we found in the previous sections.

Column (6) does the analogous experiment but this time shuts down age dependence
in mixture probabilities. Interestingly, the fit is not nearly as bad and is actually com-
parable to column (2). This shows that the life-cycle changes in earnings dynamics we
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Table II – Estimates of Stochastic Process Parameters

Specification: (1) (2) (3) (4) (5) (6) (7)
Benchmark Gaussian

process process

HIP order 1 1 0 1 1 1 0
AR(1) 2 1 2 2 2 2 1
Nonemployment shocks yes yes yes no yes yes no
Heterogenous variances? yes yes yes yes yes yes no
Probability age/inc. yes/yes yes/yes yes/yes yes/yes yes/no no/yes no/no

Parameters

�

↵

0.362 0.477 0.491 0.149 0.500 0.419 0.372
�

�

⇥ 10 0.200 0.208 — 0.045 0.164 0.203 —
corr

↵�

0.603 0.307 — --0.323 0.762 0.410 —

⇢1 0.556 0.934 0.539 0.592 0.005 0.590 1.00
⇢2 0.956 — 0.996 0.996 0.775 0.951 —
�̄1 0.290 0.417 0.325 1.852 0.579 0.461 0.156
�̄2 0.447 — 0.365 0.767 2.048 0.051 —
�

i

1 0.721 0.764 0.800 0.137 0.716 0.565 —
�

i

2 0.600 — 0.476 0.309 0.052 0.429 —
�1,0 0.260 0.426 0.187 0.191 0.196 0.218 0.354
�2,0 0.765 — 0.509 0.195 0.071 0.294 —
�

"

0.118 0.204 0.071 0.214 0.011 0.133 0.494

Objective value 20.78 26.78 23.32 37.34 45.37 25.43 72.28
Decomposition:
(i) Cross-section 1.49 2.18 2.18 2.87 8.06 3.09 36.75
(ii) Impulse resp. 1.84 3.96 2.27 7.76 10.81 2.25 14.17
(iii) Inc. growth 0.86 0.98 0.89 1.41 1.20 0.99 0.84
(iv) Inequality 0.13 0.05 0.09 1.90 0.53 0.14 0.48

Notes: This table reports a subset of the estimated parameters, which are discussed in the main text. The
rest of the parameters are reported in Table A.3.

documented can be mimicked with dependence on recent earnings, since earnings rise
with age until late in life. Therefore, allowing mixture probabilities to depend on recent
earnings is more critical than their dependence on age. This finding is also important
from a modeling perspective because, being age independent, the process in column (6)
can be used to calibrate an infinite horizon model (or a perpetual youth version) and
still capture a lot of the variation in earnings dynamics documented here.
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Finally, column (7) goes back to a bare bones—persistent (AR1) plus transitory
model—which is the most common income process used in calibrated macro models.
Because the resulting process is Gaussian, it clearly has no chance of fitting the cross-
sectional higher-order moments nor of generating the asymmetry in the impulse re-
sponses. Therefore, the estimation does what it can and does a fairly good job of match-
ing the life-cycle growth moments and the life-cycle profile of the variance of log earnings
at the expense of completely missing the cross-sectional and impulse response moments.
In the next section, we shall examine the implications of the benchmark process and the
Gaussian process for consumption-savings decisions to understand how they differ. In
Appendix C.3, we report five more versions of the estimation in which we examine the
effects of heterogeneous variances, allowing for a random walk component, allowing age
and income dependence in mixture probabilities, and so on.

6.3 Parameter Estimates

We now discuss the estimates from the benchmark process in some detail, and for
the remaining specifications, we point out the differences from the benchmark. The
estimates for the life-cycle component (�

↵

= 0.36, �
�

= 2%) are reasonable and quite
consistent with earlier estimates in the literature, even though we target a very different
set of moments here and use SSA data as opposed to the PSID data used in most
previous work.24 Turning to the dynamics of income, the two AR(1) components are
vastly different from each other: the first displays only a modest annual persistence of
⇢1 = 0.556, whereas the second one is quite persistent: ⇢2 = 0.956. Both processes
also receive large innovations, with mean standard deviation sizes of �̄1 = 0.29 and
�̄2 = 0.47, and much higher variances for some individuals given the large individual-
specific distribution around these mean values (given by e�1 = 0.72 and e�2 = 0.60).
However, it would be premature to conclude from these numbers (higher persistence and
larger variance) that the second AR(1) process is more important than the first; for that,
we also need to know how often each process gets hit by a new innovation, which is given
by the mixture probabilities, p1 and p2, discussed in a moment.

Turning to the nonemployment shock, the estimated mean of the exponential distri-
bution for the duration is � = 0.07, which implies that more than 95% of these shocks are
full-year nonemployment shocks that reduce earnings below the participation threshold
(Ymin). To the extent that these shocks are realized with nonnegligible probability, they

24Cf., Haider (2001), Heathcote et al. (2010), and Guvenen and Smith (2014).
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Table III – Mixture Probabilities of Persistent Components, Benchmark Process

Age groups RE (Percentile) groups
25–34 35–49 45–59 1 10 50 90 100

p

z1 (⇢
z

= 0.56) 0.101 0.186 0.292 0.062 0.110 0.197 0.254 0.477
p

z2 (⇢
x

= 0.96) 0.264 0.201 0.187 0.696 0.476 0.185 0.100 0.044
p

⌫

(nonemp.) 0.088 0.065 0.059 0.374 0.208 0.050 0.020 0.014
Pr (any shock) 0.351 0.369 0.458 0.738 0.563 0.364 0.341 0.515

can have important effects on the earnings dynamics of an individual. This brings up
the question of how often each of these three shocks is realized, which we turn to now.

The coefficients of the probability function in (9) are hard to interpret on their own,
so instead in Table III we report the probabilities for various age and RE percentile
groups for workers who satisfy the conditions of the base sample.25 As seen here, the
overall likelihood of receiving a shock to either component is fairly low. The probability
of receiving the first AR(1) innovation, ⌘1, is only 10% at young ages and gradually
climbs to 29% for workers after age 45. The opposite pattern is seen for the second and
more persistent AR(1) innovation, ⌘2, which has a 27% chance of being received in early
years, which falls to 19% after age 45. Table III also reports the probability of drawing
the nonemployment shock, which falls modestly from 8.8% per year at young ages to
5.9% after age 45. Overall, considering all three shocks simultaneously (last row), we
see that young workers (ages 25-35) receive a shock with about 35% probability (i.e.,
once every three years), and this probability rises to about 46% for those aged 45-60.
Although the probability rises slightly, the composition of shocks changes from (hard-to-
insure) persistent ⌘2 shocks and large nonemployment shocks to less persistent ⌘1 shocks.
Finally, in addition to these large and persistent shocks that hit every other year or so,
each individual receives smaller i.i.d. income shocks ("

t

) every year, with 11.8% standard
deviation.

The last five columns provide a different perspective by reporting the probability of
each shock by RE percentiles. Here we see much larger differences. The less persistent
AR(1) shock is very unlikely to hit low-income individuals but is much more likely for top
1% individuals. The opposite happens for the second AR(1) shock, which hits the lowest-
income group with 70% probability per year but has only a 4.4% chance for the top 1%.
Similarly, individuals in the bottom 10 percentiles receive the full year nonemployment

25Figure A.27 plots 3D graphs of pj (j = 1, 2, ⌫) and Table A.3 reports the estimated coefficients.
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Figure 12 – Model Fit: Nontargeted Statistics
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shock with a high probability, ranging from 21% to 37%, but individuals above the
median receive this shock with only a 5% chance (twice in a lifetime), and top earners
receive it with only 1.4% probability per year. Overall, the probability of receiving at
least one of the three shocks in a given year (i.e., p1 + p2 + p

⌫

) is U-shaped in recent
earnings, ranging from 74% at the low end to 34% for individuals in the 90th percentile
and up again to 52% for the top 1% individuals.

Another important point to note is that the dependence of shock probabilities on z

t

in-
duces nonlinearities in the earnings process. A key implication is that the autocorrelation
of shocks is not precisely captured by the coefficients ⇢1 and ⇢2, and the nonemployment
shock is autocorrelated even though v

t

is drawn in an i.i.d. manner. This is because a
shock in the current period affects the value of z

t

, thereby changing the probabilities of
shocks tomorrow. For example, for low-income individuals, the correlation of ⌫

t

and ⌫

t+1

is 0.60.26 This persistence has important implications for consumption-savings behavior,
which we analyze in the next section.

Because there is so much heterogeneity in these nonemployment shock probabilities
and these probabilities were not targeted directly in the estimation, it is worth comparing
the implied nonemployment rates directly to data. Figure 12a plots the fraction of

26Incidentally, this asymmetric persistence coming from nonemployment shocks contributes to the
overall asymmetry we find in the impulse response analysis. Arellano et al. (2016) document similar
asymmetry in persistence using data from the PSID.
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individuals who are full-year nonemployed in year t conditional on recent earnings in the
data and in the model. The fit is quite good, with a small discrepancy at the lowest end.27

This large heterogeneity in nonemployment rates is behind the estimated model’s ability
to generate the substantially different patterns documented for high- and low-income
individuals in the previous sections.

Finally, Figure 12b shows another moment of the data that was not targeted in
the estimation but is important for the analysis of wealth concentration in the next
section. It shows the log density of earnings (levels—not changes) in the data, along
with the counterparts from the benchmark estimation and the Gaussian process. As
seen here, the benchmark process generates a Pareto tail that matches the data almost
perfectly whereas the Gaussian process (as expected) generates a lognormal tail that
underestimates the number of individuals with very high earnings. We will return to
this point in the next section.

7 Life-Cycle Consumption-Savings Model

We now investigate some key implications of the rich earnings process estimated in
the previous section for life-cycle consumption-savings behavior. Consider a continuum
of individuals that participate in the labor market for the first T

W

years of their life,
retire at that age, and die at age T > T

W

. Individuals have standard CRRA preferences
over consumption and hence supply labor inelastically.

Individual earnings follow the stochastic process described by equations (2) to (9).
Although this process has many parameters, all dynamics are captured through only two
state variables (zi1,t and z

i

2,t), which makes it relatively straightforward to embed it into
a dynamic programming problem. Let ⌥

i ⌘ (↵

i

, �

i

, �

i

1, �
i

2) denote the parameters cap-
turing fixed (ex ante) heterogeneity. We construct a four-dimensional discrete grid over
⌥

i where each grid point corresponds to a worker type k. Therefore, some aspects of an
individual’s problem depends on his (discrete) ex ante type k, whereas others—including
the dynamics of income—are drawn from continuous distributions that are also fully
individual specific.

Individuals can borrow or save using a risk-free asset with gross return R, where
27We have also generated similar graphs from the Survey of Income and Program Participation (SIPP)

data set for various unemployment outcomes (duration, incidence, etc.) as a function of past two-year
average income, which shows the same strong decline in unemployment outcomes with past earnings.
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borrowing is subject to an age-dependent worker-type-specific limit, denoted by A

k

t

.
Then the budget constraint is given by

c

i

t

+ a

i

t+1 = a

i

t

R + Y

disp,i
t

, 8t, (10)

Y
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t
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n

Y ,

e

Y

i

t

o1�⌧

, t = 1, . . . , T

W

, (11)

Y
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t

=

⇣

e

Y

k

R

⌘1�⌧

, t = T

W

+ 1, . . . , T, (12)

a

i

t+1 � A

k

t

, 8t, (13)

where c

i

t

and a

i

t

denote consumption and asset holdings, respectively, and Y

disp,i
t

is dis-
posable income, which differs from gross income, eY i

t

, in two ways. First, the government
provides social insurance by guaranteeing a minimum level of income, Y , to all individ-
uals—more on this in a moment. Second, the government imposes a progressive tax on
after-transfer income. Following Benabou (2000) and Heathcote et al. (2014), we take
this tax function to have a power form, with exponent 1� ⌧. This specification has been
found to fit the U.S. data quite well. Finally, retirees receive pension income, eY k

R

, spec-
ified to mimic the U.S. Social Security Administration’s OASDI system.28 Appendix D
contains further details. The dynamic programming problem of an individual is
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s.t.

equations (10)-(13), and V

i

T+1 ⌘ 0,

where � is the subjective discount factor, and � governs risk aversion. This problem can
be solved using standard numerical techniques; see computational Appendix D.

7.1 Calibration

Households enter the labor market at age 25, retire at 60 (T
W

= 36), and die at
85 (T = 60). The coefficient of relative risk aversion � is set to 2 as a conservative
choice. The discount factor, �, is calibrated to replicate the wealth-to-income ratio of
4 as reported in the Flow of Funds Z1 tables.29

R is set to 3%, and A

k

t

is set equal to

28The dependence of pension on worker type k rather than individual income is to avoid introducing
another state variable.

29The total wealth-to-income ratio is defined to be total asset holdings in the population relative to
the sum of total before-tax labor income and capital income.
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each type-k’s average annual earnings over the life cycle. The parameter determining
progressivity, ⌧ , is set to 0.185 following Heathcote et al. (2014).

As for Y , Hubbard et al. (1995) estimate the total value of various government pro-
grams (food stamps, AFDC, housing subsidies, etc.) for a female-headed family with
two children and no outside earnings and assets. They obtain a value of about $7,000 in
1984 dollars—or about $12,800 in 2010 dollars. Using the OECD equivalence scale for
one adult plus two children, this comes to $6,400 per adult person. However, as we shall
see, the effects of higher-order income risk are mitigated as Y is increased, so for our
baseline calibration we take a higher—and thus conservative—value of $10,000 per year.
(To put this number in context, the 10th percentile of the RE distribution in Section 3
is about $9,000 per year.) For comparison, we shall also report and discuss results when
Y is reduced to $2,000.

The key element in the calibration is the choice of income process parameters. Here we
consider a few cases. First, we simulate the model using the process and parameters taken
from column (1) of Table II.30 We call this calibration the benchmark model in reference
to the benchmark process on which it builds. Second, however, recall that the benchmark
process features a HIP component, and the implications of HIP for consumption-savings
decisions have been analyzed in the previous literature (e.g., Guvenen (2007) and Guve-
nen and Smith (2014)). Therefore, to focus on the novel aspects of this income process
coming from higher-order income risk, we consider a second calibration in which we elim-
inate HIP by setting �

i ⌘ 0 (hereafter NOHIP model) but keep the remaining parameters
from column (1). In what follows, this second case will be the main focus of our analysis
(although we will also report the results for the benchmark model for completeness and
discuss them briefly).

Third, to provide a comparison, we also simulate the same life-cycle model with the
Gaussian process in column (7) of Table II with one modification: because we want to
compare this model with the NOHIP model, we recalibrate ⇢ such that the resulting
process generates the same rise in the variance of log disposable income over the life
cycle as the NOHIP model. See panel A of Figure 13. This yields ⇢ = 0.985. We refer
to this process as the “Gaussian model” in reference to the Gaussian process on which it
builds.

30The only exception is the variance of i.i.d. shocks, which we set to zero to simplify computation
(i.e., �" ⌘ 0).
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Figure 13 – Within-Cohort Variance of Log Disposable Income and Log Consumption
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Table IV – Welfare Costs of Idiosyncratic Shocks

Model Benchmark NOHIP p

⌫

(no z) Gaussian
(1) (2) (3) (4)

Y = $10, 000 25.3% 18.1% 14.4% 11.3%
Y = $2, 000 40.1% 34.5% 24.8% 12.5%

7.2 Results

We now study four sets of implications of the benchmark process with higher-order
moments: (i) the welfare costs of idiosyncratic fluctuations, (ii) wealth inequality, (iii)
measuring the insurability of income shocks, and (iv) the higher-order moments of con-
sumption growth.

I. Welfare Costs of Idiosyncratic Income Shocks

The first exercise aims to quantify the amount of income risk implied by the estimated
income processes. Specifically, we ask: What fraction of consumption at every date and
state would an individual in the benchmark model be willing to give up to live in a
hypothetical world with no income uncertainty? This hypothetical world is defined as
one with the income process set to its average value at each age. This experiment is
conducted behind the veil of ignorance, that is, before the individual learns his type k.
Because this is a well-understood experiment, we relegate the equations to Appendix D.
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In the benchmark model (Table IV, first column, first row), the individual is willing to
give up 25.3% of consumption at every date and state, which indicates very large welfare
costs of idiosyncratic income fluctuations. The last column reports the corresponding
number for the Gaussian model, which is 11.3%, or less than half of what we find for
the benchmark model. Second, these welfare costs turn out to be fairly sensitive to the
value of Y . Reducing Y to $2, 000 (second row) raises the welfare cost to 40.1% (from
25.3%) in the benchmark model. Interestingly, the welfare cost rises only by a little in
the Gaussian model, to 12.5% from 11.3%. The reason for this asymmetry is that in
the benchmark model, individuals occasionally receive large negative shocks (including
full-year nonemployment shocks) and therefore benefit from the insurance provided by
the income floor, whereas this is less of a case in the Gaussian model, where tail shocks
are much less likely. Therefore, weakening the safety net is more costly when the true
income process is as in the benchmark model.

Third, the benchmark process includes a HIP component in addition to higher-order
risk. To isolate from the effects of the former and focus on the more novel latter compo-
nent, in column (2) we shut down the HIP component (�i ⌘ 0). The welfare costs in the
NOHIP model are slightly smaller—falling from 25.3% to 18.1% when Y = $10, 000 and
from 40.1% to 34.5% when Y = $2, 000—but are still substantial. Therefore, higher-
order risk on its own generates larger welfare costs than a Gaussian process. The cost is
nearly three times higher: 34.5% (NOHIP) vs. 12.5% (Gaussian).

Fourth, to distinguish between the risk posed by the persistent AR(1) shocks and
nonemployment shocks, we conduct the following experiment. We eliminate the depen-
dence of the shock probability function, p

⌫

, on z1 and z2, only allowing it to vary by age
(and rescale its level so that the average nonemployment rate by age remains the same as
in the NOHIP case). This change has two effects: one, because z1 and z2 are quite per-
sistent, eliminating the dependence on them makes nonemployment shocks completely
transitory; and two, nonemployment ceases to vary with the income level and hits all
workers of a given age with the same probability. As seen in column (3), this leads to
a fall in the welfare costs from 18.1% to 14.4% (and from 34.5% to 24.8% with a low
safety net).31

31Interestingly, the welfare costs in this case are quite close to the case if we were to eliminate
nonemployment shocks completely, suggesting that most of the welfare costs of nonemployment shocks
are due to their persistence and concentration among already low-income individuals.
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Fifth, and finally, the average welfare costs reported in Table IV mask significant
heterogeneity across ex ante types (not reported in the table). For example, ranking all
individual types k by the welfare costs of the idiosyncratic risk they face in the benchmark
model, we find that the 90th percentile of this distribution is close to 26%, whereas the
10th percentile is a mere 2.4%. As can perhaps be anticipated, the highest welfare costs
are associated with types who have high values of (�1, �2) and, perhaps less obvious,
with those who have high values of (↵i

, �

i

). That is, high-income individuals suffer more
from idiosyncratic risk. This is because they are less protected by the social safety net,
the magnitude of which is too small to make a difference in their income fluctuations.

Welfare Costs of Higher-Order Income Risk. To better understand how higher-
order income risk leads to large welfare costs, consider the well-known thought experi-
ment in which a decision maker chooses between (i) a static gamble that changes con-
sumption, c, by a random proportion (1 +

˜

�) and (ii) a fixed payment ⇡, called the risk
premium, to avoid the gamble. An expected utility maximizer solves

U(c⇥ (1� ⇡)) = E
h

U(c⇥ (1 +

˜

�)

i

. (14)

To provide a decomposition for how higher-order moments affect the risk premium,
the following equation is helpful. Taking a first-order Taylor-series approximation to the
left-hand side and a fourth-order approximation to the right-hand side, we get
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where s
�

and 

�

are the skewness and kurtosis coefficients, respectively.32 This expression
is a generalization of the well-known formula that includes only the first term. Among
other things, it shows that � is perhaps more appropriately called the coefficient of
“variance aversion,” because with higher-order moments, the individual also displays
aversion to negative skewness and to excess kurtosis. Moreover, the coefficient in front
of skewness is a quadratic in � and a cubic in �

�

. Therefore, for a fixed level of skewness,
a higher curvature or dispersion can greatly amplify the risk premium. For kurtosis, the
situation is even more extreme: the coefficient is a cubic in � and a quartic in dispersion.
Therefore, income shocks that are negatively skewed or exhibit excess kurtosis (or both)

32See Appendix D.2 for derivation.
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will generate a higher risk premium than a Gaussian shock with the same variance. This
explains how the NOHIP (and benchmark) model generates a higher welfare cost even
though it has the same variance as in the Gaussian model. Notice also that our choice of
� = 2 was deliberately conservative; larger values would imply even larger welfare costs
from higher-order income risk.

II. Wealth Inequality

An important use of the consumption-savings model is for studying wealth inequality
(cf. Aiyagari (1994) and Huggett (1996)). Some recent papers have pointed out that in-
come changes that display negative skewness (Lise (2013)) or excess kurtosis (Castañeda
et al. (2003)) can generate higher wealth inequality. To complement this work, here we
explore the potential of higher-order risk whose magnitude is estimated from the U.S.
data to generate a realistic wealth distribution.

As seen in Table V, the benchmark model exhibits the highest wealth inequality,
whereas the Gaussian model exhibits the lowest. In particular, going from the Gaussian
model to the benchmark, the Gini coefficient rises from 0.58 to 0.69, and the top 10%
share rises from 37.9% to 47.4%. These differences are not just due to HIP: the NOHIP
model in column 3 has a Gini coefficient of 0.66 compared with 0.58 for the Gaussian
model, and the top 0.1% share of aggregate wealth is 2.2% in the NOHIP model relative to
1.1% for the Gaussian model. Therefore, higher-order income risk provides nonnegligible
amplification of wealth concentration, especially at the top, where the share is doubled
for the top 0.1%.33

That said, the improvement is not nearly large enough to generate the massive con-
centration of wealth at the very top observed in the U.S. data, where the top 1% holds
37% of aggregate wealth. The corresponding figure is 7% in the Gaussian model and
9.2% in the NOHIP model. Furthermore, in unreported simulations we found that al-
though increasing risk aversion from 2 to 10 increases the gap in the Gini between the
Gaussian model and the NOHIP model (generating a Gini in excess of 0.70 in the latter),
it has little effect on the top-end concentration. Thus, although the benchmark model
provides a step in the right direction, we conclude that empirically measured income

33This is due to the fact that the benchmark process generates a Pareto tail for the income distribution
(at least over a wide range of top income levels) unlike the Gaussian process—recall Figure 12b. For
example, the number of individuals with $3 million in wealth is (e15/10 ⇡) about 150 times larger under
the benchmark model than under the Gaussian one, and the gap increases monotonically for higher
income levels. This thicker Pareto tail of the income distribution translates into a thicker tail for the
wealth distribution.
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Table V – Key Statistics of Wealth Distribution

Simulated Model
U.S. Data Benchmark NOHIP Gaussian

(1) (2) (3) (4)
Gini 0.85 0.69 0.66 0.58
Top 10% 50.8% 47.4% 41.6% 37.9%
Top 1% 37.0% 10.0% 9.2% 7.0%
Top 0.1% 14.8% 2.2% 2.2% 1.1%

risk—even with negatively skewed and leptokurtic income changes—cannot generate the
thick right tail of the U.S. wealth distribution.34 That said, higher-order risk as in the
benchmark model (column 2) could be important for explaining wealth accumulation of
the top 10% excluding the top 1%, which compares favorably with the U.S. data (unlike
the Gaussian model—see Table V).

III. Measuring the Insurability of Income Shocks

A third set of implications we explore concerns the transmission of income shocks
into consumption. This transmission rate has received attention in the recent literature
because it is interpreted as a measure of partial insurance—that is, insurance above and
beyond self-insurance (see, e.g., Blundell et al. (2008), Primiceri and van Rens (2009),
and Kaplan and Violante (2010)).

Blundell et al. (2008) (hereafter BPP) propose using two simple moment conditions to
estimate the insurance coefficients in response to permanent shocks and transitory shocks,
respectively.35 The insurance coefficients range from 0 to 1, where 0 means no partial
insurance above self-insurance (or full transmission) and 1 means perfect insurance (or
no transmission). Here, the experiment we consider is the following. Suppose we give
a panel data set of income and consumption simulated from the benchmark model to
an econometrician and ask her to estimate the insurance coefficients for permanent and
transitory shocks using BPP’s moments. What would the econometrician conclude about
the extent of the insurability of income shocks?

34It seems that one needs other mechanisms, such as rate of return heterogeneity, to generate empir-
ically plausible levels of wealth inequality at the top (see, e.g., Gabaix et al. (2015) and Benhabib and
Bisin (2016)).

35The exact formulas for the BPP insurance coefficients are �⌘ = 1 � cov(�cit,y
disp,i
t+1 �ydisp,i

t�2 )

cov(�ydisp,i
t ,ydisp,i

t+1 �ydisp,i
t�2 )

for

permanent shocks and �" = 1� cov(�cit,�ydisp,i
t+1 )

cov(�ydisp,i
t ,�ydisp,i

t+1 )
for transitory shocks.
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Table VI – Measures of Insurability of Shocks

BPP insurance coefficients
Model: NOHIP Gaussian
Age: 30 40 50 30 40 50
Permanent 0.60 0.70 0.79 0.39 0.50 0.63
Transitory 0.84 0.86 0.87 0.97 0.95 0.95

Table VI reports the results for different ages. When the true data-generating process
is the NOHIP model, the BPP procedure estimates that 60% of permanent shocks are in-
sured and the remaining 40% is transmitted to consumption at age 30.36 The correspond-
ing insurance coefficient for the Gaussian process is lower—39% (so 61% transmitted).
The same gap between the insurance coefficients in the two models—of approximately
20%—is stable across different ages. Taken at face value, this finding would indicate
that persistent income shocks in the benchmark model are more insurable relative to the
Gaussian model. This could happen if the NOHIP process features less persistent shocks
(which is partly true, at least judging coarsely based on the values of ⇢1 and ⇢2) or if the
NOHIP life-cycle model features more insurance opportunities relative to the Gaussian
model (which is not true—they both have self-insurance only).

However, a second way economists have approached the question of the degree of
insurance is by studying how within-cohort consumption inequality evolves over the life
cycle. The idea is that if shocks are easily insurable—because either they are not persis-
tent or the economy features rich smoothing opportunities—then consumption inequality
should not rise much with age. To explore this, Figure 13b plots the cross-sectional vari-
ance of log consumption in the NOHIP and Gaussian models. In the NOHIP model,
consumption inequality rises by about 22 log points from age 25 to age 60, which is
about twice as large as the rise in the Gaussian model (of 13 log points). Therefore, this
second way to look at the degree of partial insurance leads to the opposite conclusion:
shocks in the NOHIP model are harder to insure, which causes consumption inequality
to rise more than in the Gaussian model.37 This latter evidence is also more consistent

36For brevity, we omit the statistics of the benchmark model from here on, which look very similar
to the NOHIP model discussed here.

37Further analysis has shown that the key feature of the NOHIP model in generating the large rise
in inequality is the nonlinearity and persistence of nonemployment shocks. Removing the dependence
of p⌫ on z as we did above (and which breaks both the autocorrelation and income dependence of
nonemployment) leads to a much smaller rise in consumption inequality—though still higher than the
Gaussian model—see Figure 13b.
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Table VII – Cross-Sectional Moments of Consumption

Model NOHIP Gaussian
Age 30 40 50 30 40 50

Variance (⇥10

2) 0.86 0.63 0.34 0.50 0.41 0.20
Kelley skewness –0.33 –0.10 0.06 0.00 0.06 0.09
Crow-Siddiqui kurtosis 5.3 7.8 8.5 3.0 3.0 3.1

with the higher welfare costs of idiosyncratic shocks that we found for the NOHIP model
relative to the Gaussian model above.

Taken together, we conclude from these two pieces of evidence that once we move
beyond Gaussian shocks and linear models, extra care is needed to properly measure
the extent of insurability of shocks. The nonlinear dynamics and higher-order moments
generate interesting new patterns. For example, why does the transmission parameter
indicate a low rate of transmission in the NOHIP model? An important reason is that
the partial insurance coefficient measures the average response of consumption growth
to income shocks. But it is plausible to expect that the consumption response varies by
the size of the shock, by its sign, and by many of its other properties established in the
previous sections. So, the average response coefficient provides an incomplete picture of
the transmission of income shocks to consumption. Instead, we would like to know the
properties of the entire distribution of consumption growth rates implied by a model,38

including its higher-order moments. We turn to this next.

IV. Higher-Order Moments of Consumption Growth

Table VII reports the variance, Kelley skewness, and Crow-Siddiqui kurtosis of con-
sumption growth in the NOHIP model and the Gaussian model. First, the variance of
consumption growth declines with age in both models but is about 50% larger in the
benchmark model as in the Gaussian one. Recall that both income processes have similar
variances for income growth. So this suggests that consumption growth is much more
volatile under the benchmark model.

Second, consumption growth is negatively skewed before age 50 in the benchmark
model but has slight positive skewness in the Gaussian model. The minimum income
floor induces slight positive skewness in both models—without it, the benchmark model

38This point is also emphasized contemporaneously in Arellano et al. (2016).
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delivers even more negatively skewed consumption growth. Interestingly, consumption
growth becomes less negatively skewed with age, even though income shocks become
more negatively skewed, which seems to be due to precautionary wealth allowing better
smoothing at older ages.

Finally, consumption growth has very high excess kurtosis, as measured by the ro-
bust Crow-Siddiqui measure. The Gaussian model delivers almost no excess kurtosis
(the Gaussian distribution has a Crow-Siddiqui kurtosis of 2.9). (The third and fourth
standardized moment measures of skewness and kurtosis—which we do not report here
for brevity—confirm the same finding). In further analysis, we have also found that the
excess kurtosis of consumption growth increases when risk aversion is increased.

To our knowledge, there are only a few papers that have considered deviations from
lognormality of the consumption growth distribution. Among these, Brav et al. (2002)
argued that accounting for the skewness of consumption growth distribution is criti-
cal for reconciling the observed equity premium with the data, and Constantinides and
Ghosh (2016) provide evidence that household consumption growth is negatively skewed
in the US data. More recently, Toda and Walsh (2015) found that the household con-
sumption growth distribution displays a double Pareto distribution, which is consistent
with the implications of the benchmark model studied here displaying excess kurtosis
of consumption growth. However, neither paper studies the life cycle patterns of these
moments shown in Table VII. An exciting future research avenue would be to confront
these implications with high quality micro consumption data from which higher-order
moments can be measured precisely.

8 Concluding Thoughts

Our analysis of the life-cycle earnings histories of millions of U.S. workers has reached
two broad conclusions. First, the higher-order moments of individual earnings shocks
display large deviations from lognormality. In particular, earnings shocks display strong
negative skewness (what can be thought of as individual-level disaster shocks) and ex-
tremely high kurtosis. The high kurtosis implies that in a given year, most individuals
experience very small earnings changes, few experience middling changes, and a small
but nonnegligible number experience extremely large changes. The second conclusion is
that these statistical properties of earnings changes vary substantially both over the life
cycle and with the earnings level of individuals.
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Although the lognormal framework is often adopted in the literature on the grounds
of tractability, negative skewness and excess kurtosis are naturally generated by standard
economic models of job search over the life cycle. For example, job ladder models in which
workers do on-the-job search and move from job to job as they receive better offers and
fall off the job ladder after nonemployment not only will generate negative skewness but
also will imply that skewness becomes more negative with age. This is because as the
worker climbs the job ladder, the probability of receiving a wage offer that is much higher
than the current wage will be declining. At the same time, as the worker moves higher
up the wage ladder, falling down to a flat nonemployment surface (or disability) implies
that there is more room to fall. Furthermore, as the attractiveness of job offers declines
with the current wage, more job offers will be rejected, and therefore the frequency of
job-to-job transitions will also decline with age, implying that most wage changes will
be small (within-job) changes. This increases the concentration of earnings changes near
zero, which in turn raises the kurtosis of changes. That said, the magnitudes of variation
over the life cycle and by earnings levels that we documented in these moments are so
large that it is an open question whether existing models of job search can be consistent
with these magnitudes, and, if not, what kinds of modifications should be undertaken to
make them consistent. In ongoing work, Hubmer (2016) and Kapon et al. (2016) explore
the ability of various frameworks to generate some of these patterns.

A limitation of the SSA data set used in this paper is the lack of information on hours
and wages separately. Consequently, we are not able to distinguish the extent to which
the patterns documented here are due to changes in hours versus changes in the wage
rate. In ongoing work, Busch et al. (2016) use detailed panel data on French workers
(with information on daily hours, days in an employment spell, daily wages, employer
ID, and so on), which allows them to make progress on these questions.

We have also estimated nonparametric impulse response functions of earnings shocks
and found significant asymmetries: positive shocks to high-earnings individuals are quite
transitory, whereas negative shocks are very persistent; the opposite is true for low-
earnings individuals. Although these statistical properties are typically ignored in quan-
titative analyses of life-cycle models (with the standard persistent-transitory lognormal
income processes), they are fully consistent with search-theoretic models of careers over
the life cycle. After establishing these empirical facts nonparametrically, we estimated
what we think is the simplest earnings process that is broadly consistent with these
salient features of the data.
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The nonparametric empirical facts documented in Sections 3 to 5 (along with those
reported in the appendix) add up to more than 10,000 empirical moments of individual
earnings data. Adding analogous moments for women, as mentioned in footnote 1,
doubles this number. The richness of this information is far beyond what we are able to
fully utilize in the estimation exercise in this paper. Furthermore, for different questions,
it would make sense to focus on a subset of these moments that are different from what
we have aimed for in this paper. With these considerations in mind, we make these
detailed moments available online for download as an Excel file.

Finally, the consumption-savings model we studied here showed that higher-order
income risk can have quite different implications for various distributional phenomena
compared with the commonly used Gaussian processes. We believe that this analysis
only scratched the surface of potential implications of higher-order income risk. We hope
the empirical findings about the nature of earnings dynamics documented in this paper
feed back into economic research and policy analyses.
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A Data Appendix

Constructing a nationally representative panel of males from the MEF is relatively straight-
forward. The last four digits of the SSN are randomly assigned, which allows us to pick a
number for the last digit and select all individuals in 1978 whose SSN ends with that number.39

This process yields a 10% random sample of all SSNs issued in the United States in or before
1978. Using SSA death records, we drop individuals who are deceased in or before 1978 and
further restrict the sample to those between ages 25 and 60. In 1979, we continue with this
process of selecting the same last digit of the SSN. Individuals who survived from 1978 and
who did not turn 61 continue to be present in the sample, whereas 10% of new individuals who
just turn 25 are automatically added (because they will have the last digit we preselected), and
those who died in or before 1979 are again dropped. Continuing with this process yields a 10%
representative sample of U.S. males in every year from 1978 to 2013.

The measure of wage earnings in the MEF includes all wages and salaries, tips, restricted
stock grants, exercised stock options, severance payments, and many other types of income
considered remuneration for labor services by the IRS as reported on the W-2 form (Box 1).
This measure does not include any pre-tax payments to IRAs, retirement annuities, independent
child care expense accounts, or other deferred compensation.

Finally, the MEF has a small number of extremely high earnings observations. For privacy
and confidentiality reasons, we cap (winsorize) observations above the 99.999th percentile of
the year-specific income distribution. For background information and detailed documentation
of the MEF, see Panis et al. (2000) and Olsen and Hudson (2009).

Table A.1 – Sample Size Statistics for Cross-Sectional Moments of One-Year Earnings
Growth

# Observations in Each RE Percentile Group
Age group Median Min Max Total (’000s)

25-29 69,287 43,500 71,580 6,728
30-34 124,707 74,913 127,996 12,048
35-39 133,598 81,547 136,480 12,897
40-44 138,568 85,502 141,336 13,358
45-49 133,355 84,145 136,090 12,868
50-54 117,533 75,954 120,072 11,361
55-59 73,618 49,723 76,442 7,182

Note: Each entry reports the statistics of the number of observations in each of the 100 RE percentile
groups for each age. Cross-sectional moments are computed for each year and then averaged over all
years, so sample sizes refer to the sum across all years of a given age by percentile group. The last column
(“Total”) reports the sum of observations across all 100 RE percentile groups for the age group indicated.

39In reality, each individual is assigned a transformation of their SSN number for privacy reasons,
but the same method applies.
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Table A.1 shows some sample size statistics regarding the sample used in the cross-sectional
moments. Recall that we compute these statistics for each age-year-RE percentile and aggregate
them across years. Therefore, sample sizes refer to the sum across all years of a given age by
percentile group. Each row reports the median, minimum, maximum and total number of
observations used to compute the cross-sectional moments for a given age group. Note that
even the smallest cell has a sample size of more than 40,000 on which the computation of
higher-order moments is based.

A.1 Imputation of Self Employment Income Above SSA Taxable
Limit

Our main sample used to construct cross-sectional moments and impulse response mo-
ments covers a period between 1994 and 2013 during which neither self employment income
nor wage/salary income is capped. However, this sample period–covering only 20 years–is too
short to construct reliable measures of lifetime incomes of individuals. For this purpose, lifetime
income moments are constructed using the 1978-2013 sample that covers 36 years. During this
sample period self employment income is capped by the SSA maximum taxable earnings limit
before 1994. In this section we discuss our methodology of imputing self employment income
that is capped by this limit.

Let ymax

t

be the official SSA maximum taxable earnings limit in year t. Our goal is to impute
the uncapped (unobservable) self employment income measure, ỹSE

i,t

for individuals who have self
employment income above the threshold �y

max

t

reported in the MFE data; i.e., ySE
it

� �y

max

t

,
where � < 1.40 For this purpose we take the first year in our sample with uncapped self
employment income, 1996, and regress self employment income, ySE

i,1996 on observables that can
be constructed for the period before 1994 as well.41 In particular, we estimate the following
specification using quantile regression on 75 quantiles:
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(16)
where y

W

i,t

is the wage and salary income of individual i in year t, I is the indicator function,
and "

it

is the residual term. We run this regression 7 times for each age group based on their
age in year 1996: 25–29, 30–34,..., 50–54, and 55–60. As a result we have regression coefficients
indexed by h = 1, 2, ...7 and q = 1, 2, . . . , 75.

We, then, use these regression coefficients to impute the uncapped self employment income
before 1994 for individuals who have SE income above the limit �ymax

t

reported in the MFE
data. Then, for an individual who is in age group h = 1, 2, ...7 in year t = 1981, 1981, ...1993

40We assume � = 0.95 < 1 because in the MFE data we have several observations above the SSA
taxable limit implying measurement error around the limit.

41The first year in our sample with uncapped self employment income is 1994 but we rather use 1996
self employment income in this regression because of low quality in 1992 self employment income.
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Figure A.1 – Fraction of Top-Coded Self Employment Income Observations
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where ⌧ is drawn from a uniform distribution on the set of integers from 1 to 75.

Figure A.2 – Income Growth for Imputed and Non-Imputed Data
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Figure A.2 plots the fraction of top coded self employment income observations against the
percentiles of lifetime earnings distribution at ages 25, 30, 35, and 40. Almost no observations

42We start with year 1981 because we need to observe wage and self employment income in the
previous three years.
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are top coded for individuals below the 20th percentile of the lifetime earnings distribution, in
particular at young ages. As expected, the fraction of top-coded observations increases with
age and with lifetime earnings and is highest for workers in the 99th percentile when they are
40 years old.

Figure A.2 plots lifetime income growth against lifetime earnings percentiles using imputed
and non-imputed data. The two series are indistinguishable, indicating that top-coding has
very little effect on lifetime income growth.

B Appendix: Robustness and Additional Figures

This section reports additional results from the data. Section B.1 reports the cross-sectional
moments of one-year earnings growth. Section B.2 shows the cross-sectional moments of one-
year and five-year arc percent changes of earnings. Section B.3 investigates why skewness
becomes more negative over the life cycle. Finally, Section B.4 shows several features of the
data that are mentioned in the paper but are relegated to the appendix.

B.1 Cross-Sectional Moments of One-Year Earnings Growth
Throughout the main text, we showed the cross-sectional moments of five-year (log) earnings

growth. This section shows analogous features of the data for one-year earnings growth.

Figure A.3 – Standard Deviation of One-Year Earnings Growth

(a) Second Standardized Moment
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(b) P90-10
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Figure A.4 – Skewness of One-Year Earnings Growth

(a) Third Standardized Moment
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(b) Kelley Measure
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Figure A.5 – Kelley’s Skewness Decomposed: Change in P90-P50 and P50-P10 Relative
to Age 25–29

(a) P90-P50
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Figure A.6 – Kurtosis of One-Year Earnings Growth

(a) Fourth Standardized Moment
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(b) Crow-Siddiqi Measure
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B.2 Arc-Percent Moments
Throughout the paper, we documented moments of log earnings changes. To do so, we

are forced to drop observations close to zero to obtain sensible statistics. However, as we
discuss in Section 2 such observations contain potentially valuable information, as they inform
us about very large changes in earnings caused by events such as long-term nonemployment.
To complement our analysis, Section B.2 reports the cross-sectional moments of arc percent
changes defined in Section 2, which we reproduce here for convenience:

arc percent change: �arcY
i

t,k

=

Y

i

t+k

� Y

i

t

�

Y

i

t+k

+ Y

i

t

�

/2

. (18)

This measure allows computation of time differences even when the individual has zero income
in one of the two years. Section B.2.1 shows the moments for one-year arc percent change,
whereas B.2.2 shows the moments for five-year change.
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B.2.1 Moments of One-Year Arc Percent Changes

Figure A.7 – Standard Deviation of Annual Earnings Change (Arc percent)

(a) Second Standardized Moment
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(b) P90-10
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Figure A.8 – Skewness of Annual Earnings Change (Arc percent)

(a) Third Standardized Moment
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(b) Kelley Measure
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Figure A.9 – Kelley’s Skewness Decomposed: Change in P90-P50 and P50-P10 Relative
to Age 25–30 (Arc percent)

(a) P90-P50
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(b) P50-P10
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Figure A.10 – Kurtosis of Annual Earnings Change (Arc percent)

(a) Fourth Standardized Moment
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(b) Crow-Siddiqi Measure
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B.2.2 Moments of Five-Year Arc Percent Changes

Figure A.11 – Standard Deviation of Five-Year Earnings Change (Arc percent)

(a) Second Standardized Moment
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(b) P90-10
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Figure A.12 – Skewness of Five-Year Earnings Change (Arc percent)

(a) Third Standardized Moment
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(b) Kelley Measure
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Figure A.13 – Kelley’s Skewness Decomposed: Change in P90-P50 and P50-P10 Rel-
ative to Age 25–30 (Arc percent)

(a) P90-P50
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(b) P50-P10
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Figure A.14 – Kurtosis of Five-Year Earnings Change (Arc percent)

(a) Fourth Standardized Moment
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(b) Crow-Siddiqi Measure
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B.3 Why Does Skewness Become More Negative With Age?
A natural follow up question is whether the increasingly more negative skewness over the

life cycle is primarily due to a compression of the upper tail (fewer opportunities to move up) or
due to an expansion in the lower tail (increasing risk of falling a lot)? For the answer, we need
to look at the levels of the P90-P50 and P50-P10 separately over the life cycle. The left panel of
Figure A.15 plots P90-P50 for different age groups minus the P90-P50 for 25- to 29-year-olds,
which serves as a normalization. The right panel plots the same for P50-P10. One way to
understand the link between these two graphs and skewness is that keeping P50-P10 fixed over
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the life cycle, if P90-P50 (left panel) declines with age, this causes Kelley’s skewness to become
more negative. Similarly, keeping P90-P50 fixed, a rise in P50-P10 (right panel) has the same
effect.

Turning to the data, up until age 49, both P90-P50 and P50-P10 decline with age (across
most of the RE distribution). This leads to the declining dispersion that we have seen above.
The shrinking P50-P10 would also lead to rising skewness if it were not for the faster compression
of P90-P50 during the same time. Therefore, from ages 25 to 49, the increasing negativity of
skewness is entirely due to the fact that the upper end of the shock distribution compresses
more rapidly than the compression of the lower end. After age 50, P50-P10 starts expanding
rapidly (larger earnings losses becoming more likely), whereas P90-P50 stops compressing any
further (stabilized upside). Thus, during this phase of the life cycle, the increasing negativity
in Kelley’s skewness is due to increasing downward risks and not the disappearance of upward
moves. The only exception to this pattern is, again, the top earners (RE95 and above) for
whom P90-P50 actually never compresses over the life cycle, whereas the P50-P10 gradually
rises as they get older. Therefore, as they climb the wage ladder, these individuals do not face
a tightening ceiling, but do suffer from an increasing risk of falling a lot.

Figure A.15 – Kelley’s Skewness Decomposed: Change in P90-P50 and P50-P10 Rel-
ative to Age 25–30
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(b) P50-P10
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B.4 Further Figures
In this section, we report some additional figures of interest that are omitted from the main

text due to space constraints. First, Figure A.16 plots selected percentiles of the future earnings
change distribution for every RE percentile.

61



Figure A.16 – Selected Percentiles of Earnings Changes

(a) One-Year Changes
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(b) Five-Year Changes
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Figure A.17 – Moors Kurtosis of Log Earnings Changes

(a) One-Year Changes
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(b) Five-Year Changes
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Second, Figure A.17 shows an additional measure of kurtosis proposed by Moors (1988) for
one- and five-year earnings changes. Similar to the measure proposed by Crow and Siddiqui
(1967), this measure is robust to outliers in the tails. Moors’ kurtosis, 

M

is defined as



M

=

(P87.5� P62.5) + (P37.5� P12.5)

P75� P25

.

For a Gaussian distribution, Moors’ kurtosis always takes the value of 1.23 (shown on dashed
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lines).
Lastly, Figure A.16 plots the cross-sectional variance of log earnings over the life cycle,

constructed along the lines described in Deaton and Paxson (1994).

Figure A.18 – Within-Cohort Variance of Log Earnings
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B.5 Cross-Sectional Moments for Job-Stayers vs. Job-Switchers
In the main text, we analyzed the properties of earnings growth separately for job stayers

and switchers by showing percentile-based moments of earnings growth. Here, we complement
our analysis by showing several features of the data that were omitted in the main text to
save space. First, Figure A.19 shows our measure of the fraction of job stayers as a function
of recent earnings and age. The probability of staying with the same employer increases with
recent earnings and age. For the youngest age group (25-34), the probability of staying in
the same job is around 20% at the bottom of the recent earnings distribution. This fraction
increases with recent earnings and reaches a peak around 60% at the 95th percentile of the
RE distribution. This pattern reverses itself slightly at the top of the RE distribution. As
workers age, the probability of staying with the same employer changes increases across the RE
distribution.

Second, we complement our analysis of job stayers and switchers by investigating the central-
ized moments of one- and five-year earnings changes (as opposed to percentile-based moments
analyzed in the main text). We plot these moments in Figure A.21.

The results are consistent with what we might expect. Job-stayers (i) face a dispersion of
earnings changes that is around half that of job-changers, (ii) face shocks that are less negatively
skewed as opposed to job-switchers who face shocks that are very negatively skewed, and (iii)
experience shocks with much higher kurtosis than job-switchers. In fact, kurtosis is as high
as 38 for annual changes and 25 for five-year changes for job-stayers, but is less than 15 for
job-switchers at both horizons.
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Figure A.19 – Fraction Staying Jobs Between t and t+ 1
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C Estimation

In this section we describe the steps of the estimation procedure in more detail.

Pretesting for Model Specification

To decide on the general stochastic process that we use in estimation, we conducted extensive
pretesting as follows. In the first stage, we use each set of moments presented above as diagnostic
tools to determine the basic components that should be included in the stochastic process that
we will then fit to the data. Clearly, this stage requires extensive pre-testing and exploratory
work. For example, to generate the life-cycle earnings growth patterns documented in Section
5, we considered three basic ingredients: (i) an AR(1) process + an i.i.d. shock, (ii) growth rate
heterogeneity with no shocks, and (iii) a mixture of two AR(1) processes where each component
receives a nonzero innovation with a certain probability. We picked the first two ingredients
because of the widespread attention they garnered in the previous literature, and the third one
based on our conjecture that it might perform well.

We found that the first ingredient, on its own, could not generate the rich patterns of
earnings growth revealed by the data, whereas the HIP process performed fairly well, and the
AR(1) mixture process performed the best. Therefore, we concluded that a stochastic process
for earnings should include either (ii) or (iii) (or both) as one of its components. Although
earnings growth data on their own could not determine which one of these pieces is more
important, when we analyze these data along with the other moments, we will be able to obtain
sharper identification of the parameters of these two components.

64



Figure A.20 – Percentile-Based Moments of Earnings Growth: Stayers vs Switchers

(a) P90-P10, One-year
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(b) Kelley’s Skewness, One-Year
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Figure A.21 – Second to Fourth Moments of Earnings Growth: Stayers vs Switchers

(a) Std. Dev., One-year
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(b) Std. Dev., Five-Year
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Accounting for Zeros. Recall that in order to construct the cross-sectional moments, we
have dropped individuals who had very low earnings—below Y min—in year t or t + k so as
to allow taking logarithms in a sensible manner.43 Although this approach made sense for
documenting empirical facts that are easy to interpret, for the estimation exercise, we would
like to also capture the patterns of these “zeros” (or very low earnings observations), given
that they clearly contain valuable information. To this end, instead of targeting moments of
log earnings change, we target moments of arc percent change, as defined in equation (18).
According to this measure, an income change from any level to 0 corresponds to an arc percent
change of -2, whereas an income change from 0 to any level indicates an arc percent change of
2.

Standard Deviation of (Log) Earnings Levels. Although the main focus of this
section is on earnings growth, the life-cycle evolution of the dispersion of earnings levels has
been at the center of the incomplete markets literature since the seminal paper of Deaton and
Paxson (1994). For completeness, and comparability with earlier work, we have estimated the
within-cohort variance of log earnings over the life cycle and report it in Figure A.18.

Aggregating Moments. If we were to match all data points in all these moments (i.e, for
every RE percentile and every age group), it would yield more than 10,000 moments. Although
this step is doable, not much is likely to be gained from such a level of detail, and it would make
the diagnostics—that is, judging the performance of the estimation—quite difficult. To avoid
this, we aggregate 100 RE percentiles into 10 to 15 groups and the 6 age groups into three (ages
25–34, 35–44 and 45–55) for cross-sectional moments and 2 age groups (ages 25–34 and 35–55)
for impulse response moments. Full details of this aggregation are included in Section C.1. After
the aggregation procedure, we are left with 120 moments that capture average earnings over the
life cycle (targeted ages are 25, 30, 35, 40, 45, 50, 55, and 60); 234 moments for cross-sectional
statistics (standard deviation, skewness and kurtosis of one-year and five-year earnings growth);
and 800 moments coming from the impulse response functions. Adding the 36 moments on the
variance of log earnings, in sum, we target a total of 120 + 234 + 800 + 36 = 1, 190 moments.44

Let m

n

for n = 1, ..., N = 1, 190 denote a generic empirical moment, and let d

n

(✓) be the
corresponding model moment that is simulated for a given vector of earnings process parameters,
✓. We simulate the entire earnings histories of 100,000 individuals who enter labor market at
age 25 and work until age 60. When computing the model moments, we apply precisely the
same sample selection criteria and employ the same methodology to the simulated data as we
did with the actual data. To deal with potential issues that could arise from the large variation
in the scales of the moments, we minimize the scaled arc percent deviation between each data
target and the corresponding simulated model moment. For each moment n, define

F

n

(✓) =

d

n

(✓)�m

n

0.5 (|d
n

(✓)|+ |m
n

|) +  

n

,

where  
n

> 0 is an adjustment factor. When  

n

= 0 and m

n

is positive, F

n

is simply the
percentage deviation between data and model moments. This measure becomes problematic

43We were able to include those below the threshold in sets (i) and (iii) because for those moments
it made sense to first take averages, including zeros, and then take the logarithms of those averages.

44The full set of moments targeted in the estimation are reported (in Excel format) as part of an
online appendix available from the authors’ websites.
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when the data moment is very close to zero, which is not unusual (e.g., impulse response of arc
percent earnings changes close to zero). To account for this, we choose  

n

to be equal to the
10th percentile of the distribution of the absolute value of the moments in a given set. The
MSM estimator is

ˆ

✓ = argmin

✓

F (✓)

0
WF (✓), (19)

where F (✓) is a column vector in which all moment conditions are stacked, that is,

F (✓) = [F1(✓), ..., FN

(✓)]

T

.

The weighting matrix, W , is chosen such that the life-cycle average earnings growth moments
and impulse response moments are assigned a relative weight of 0.25 each, the cross-sectional
moments of earnings growth receive a relative weight of 0.35, and the variance of log earnings
is given a relative weight of 0.15.45

C.1 Moment Selection and Aggregation
1. 1. Cross-sectional moments of earnings changes. In order to capture the
variation in the cross-sectional moments of earnings changes along the age and recent earnings
dimensions, we condition the distribution of earnings changes on these variables. For this
purpose, we first group workers into 6 age bins (five-year age bins between 25 and 54) and
within each age bin into 13 selected groups of RE percentiles in age t� 1. The RE percentiles
are grouped as follows: 1, 2–10, 11–0, 21–30, ..., 81–90, 91–95, 96–99, 100. Thus, we compute
the three moments of the distribution of one- and five-year earnings changes for 6 ⇥ 13 = 78

different groups of workers. We aggregate these 6 age bins into 3 age groups, Ai

t�1. The first age
group is defined as young workers between ages 25 through 34, the second is between ages 35-44,
whereas the third age group is defined as workers between the ages of 35 and 54. Consequently,
we target three moments of one- and five-year arc percent change for three age and 13 recent
earnings group, giving us 3 ⇥ 2 ⇥ 3 ⇥ 13 = 234 cross-sectional moments. These moments are
shown in figure A.22.

2. Mean of log earnings growth. The second set of moments captures the heterogeneity
in log earnings growth over the working life across workers that are in different percentiles of
the LE distribution. We target the average dollar earnings at 8 points over the life cycle: ages
25, 30, ..., and 60 for different LE groups. We combine LE percentiles into larger groups to keep
the number of moments at a manageable number, yielding 15 groups consisting of percentiles
of the LE distribution: 1, 2–5, 6–10, 11–20, 21–30,..., 81–90, 91–95, 96–97, 98–99, and 100. The
total number of moments we target in this set is 8⇥ 15 = 120.

3. Impulse response functions. We target average arc percent change in earnings over
the next k years for k = 1, 2, 3, 5, 10, that is, E[�

arc

Y

i

t,k

], conditional on groups formed by
crossing age, recent earnings Y

t�1, and earnings change between t�1 and t �

arc

Y

i

t,1. We aggre-
gate age groups into two: young workers (25-34) and prime-age workers (35-55). In each year,
individuals are assigned to groups based on their ranking in the age-specific RE distribution.
The following list defines these groups in terms of the RE distribution: 1–5, 6–10, 11–30, 31–50,

45More precisely, each life-cycle growth moment is weighed by 0.25/120, each cross-sectional moment
by 0.35/234, each impulse response moment by 0.25/800, and each variance moment by 0.15/36.
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Figure A.22 – Cross Sectional Moments Targeted in the Estimation
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(b) Standard Deviation of Five-Year Earnings
Growth
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(c) Skewness of One-Year Earnings Growth
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(d) Skewness of Five-Year Earnings Growth
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(e) Kurtosis of One-Year Earnings Growth
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(f) Kurtosis of Five-Year Earnings Growth
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51–70, 71–90, 91–95, 96–100. We then group workers based on the percentiles of the age- and
RE-specific income change distribution, �

arc

Y

i

t,1: 1–2, 3–5, 6–10, 11–30, 31–50, 51–70, 71–90,
91–95, 96–98, 99–100. As a result, we have a total of 2 ⇥ 8 ⇥ 10 ⇥ 5 = 800 moments based
on impulse response. The impulse response functions targeted in the estimation are plotted in
figures A.23a–A.24. More specifically, Figure A.23a plots for prime age workers with median
recent earnings, the mean reversion patterns at various horizons. Figures A.23b and A.24c
do the same for workers at the 90th and 10th percentiles of the recent earnings distribution,
respectively. Lastly, figure A.24 shows the variation of these impulse response functions with
recent earnings.

4. Variance of log earnings. We target the life cycle profile of the variance of log earnings
for income observations larger than our minimum income threshold. As a result, we have a total
of 36 moments based on the variance of log earnings. Note that the life-cycle inequality profile
is plotted on Figure A.18.

C.2 Numerical Method for Estimation
The estimation objective is maximized as described now. The global stage is a multi-start

algorithm where candidate parameter vectors are uniform Sobol’ (quasi-random) points. We
typically take about 10,000 initial Sobol’ points for pre-testing and select the best 2000 points
(i.e., ranked by objective value) for the multiple restart procedure. The local minimization stage
is performed with a mixture of Nelder-Mead’s downhill simplex algorithm (which is slow but
performs well on difficult objectives) and the DFNLS algorithm of Zhang et al. (2010), which
is much faster but has a higher tendency to be stuck at local minima. We have found that the
combination balances speed with reliability and provides good results.

C.3 Additional Estimation Results
This section contains estimation results not reported in the main text. We first estimate

additional specifications. Then, for all of the estimated income processes, we report some of
the parameters that were not reported in Table II.

Model Fit: Additional Figures Lastly, in figure A.26, we show the fit of the benchmark
specification on impulse response moments. Eight panels correspond to the dynamics of earnings
changes for various recent earnings percentiles. The plotted fit is for prime-age workers.

Results for Additional Specifications Table A.2 reports the estimates of five specifica-
tions. The first column has two modifications to our benchmark process: It contains a random
walk component that is subject to shocks with age- and income-varying probabilities but does
not contain an nonemployment shock. To economize on parameters, we do not allow the in-
novation variances to the random walk component to be heterogeneous. Columns (2) through
(4) are also simple variations of the benchmark process. In (2), the process does not have a
HIP component, but is otherwise identical to the benchmark specification. Column (3) shuts
down the heterogeneity in innovation variances, column (4) shuts down the dependence of shock
probabilities on age and income. Finally, the last column estimates a version of the standard
AR(1) process, where the AR(1) component gets hit by shocks with age- and income-dependent
probabilities.
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Figure A.23 – Impulse Response Moments Targeted in the Estimation, Prime-Age
Workers

(a) Workers with Median RE
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(b) Workers at the 90th Percentile of RE Distribu-
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Figure A.24 – Asymmetric Mean Reversion: Butterfly Pattern
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Parameter Estimates Table A.3 contains several parameters that were not reported in
the main text due to space constraints. These parameters include the means of shocks and the
coefficients on age and income in the probability functions for 11 estimated specifications.46

Since it is difficult to interpret the magnitudes of the coefficients on shock probabilities, in
Figure A.27 we visually show the estimated relationship between shock probabilities and age
and income for the benchmark specification.

D Details of Consumption Model

Retirement Pension There is a social security system that pays pension after retirement.
We model the retirement pension as a function of the average earnings below social security
maximum taxable earnings of worker’s own type k, AEk over the life cycle. In particular, the
pension system mimics the U.S. social security “primary insurance amount (PIA)” which is the
benefit a person would receive if he begins receiving retirement benefits at the normal retirement
age:

y

k

R

=

8

>

<

>

:

0.9AE

k

AE

k

AE

< 0.23

0.2AE

k

+ 0.32(AE

k � 0.23AE) 0.23 <

AE

k

AE

< 1.38

0.57AE + 0.15(AE

k � 1.38AE)

AE

k

AE

> 1.38

, t = T

W

+ 1, ...T,

where AE is the average earnings in the economy.

D.1 Numerical Solution of the Consumption Model
In order to be able to fully capture the features of the rich earnings dynamics we estimated

in this paper, we chose not to discretize the income process when solving the consumption
46We estimated 12 specifications in total, but all parameters have already been reported for the

“Gaussian process” in the main text.
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Figure A.25 – Fit of Estimated Model to Key Data Moments
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Figure A.26 – Fit of Estimated Model to Key Impulse Response Data Moments for
the 8 RE Groups
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model. Thus it is worth discussing our numerical solution methodology to solve an otherwise
standard Bewley model. We employ value function iteration to solve for the policy function
for the consumption decision and then use the policy function to simulate consumption-savings
decisions of individuals. We now discuss the details below.

D.1.1 Bounds and Grids

For a given
�

↵

k

,�

k

,�

k

z1
,�

k

z2

�

� type worker, the value function has three continuous variables
for each age t, asset holdings, and two persistent components, a

t

, z1,t, z2,t. We start simulating
the continuous income process which is used in the simulation of the consumption path of
individuals. We take the minimum and maximum values of simulated persistent components
to be the bounds of the z1,t and z2,t spaces. We choose grip points in the z1,t and z2,t spaces to
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Table A.2 – Estimates of Stochastic Process Parameters for Additional Specifications

Specification: (1) (2) (3) (4) (5)
HIP order 1 0 1 1 0
AR(1) 2 2 2 2 1
RW yes no no no no
Nonemployment. shock no no yes yes no
Heterog. variances? yes yes no yes no
Prob. age/inc. yes/yes yes/yes yes/yes no/no yes/yes

Parameters

�

↵

0.197 0.319 0.388 0.552 0.588
�

�

⇥ 10 0.045 — 0.228 0.180 —
corr

↵�

0.712 — 0.330 0.543 —

⇢1 -0.006 0.645 0.459 0.024 0.993
⇢2 0.786 1.016 0.961 0.774 —
�̄1 0.967 1.992 0.494 0.703 0.999
�̄2 1.855 1.077 0.520 2.030 —
�̄3 0.551
�

i

1 0.624 0.079 — 0.327 —
�

i

2 0.040 0.903 — 0.006 —
�1,0 0.272 0.145 0.343 0.581 0.376
�2,0 0.300 0.250 0.662 0.017 —
�

"

0.055 0.242 0.085 0.024 0.303

Objective value 23.18 38.15 23.37 46.78 43.89
Decomposition:
(i) Cross-section 0.83 3.15 2.03 8.77 5.93
(ii) Impulse resp. 2.97 7.44 2.48 11.33 8.75
(iii) Inc. growth 1.02 1.60 0.77 1.17 2.90
(iv) Inequality 0.55 2.35 0.19 0.61 1.68

be equally spaced.47 We have 21 and 41 grid points for z1,t and z2,t spaces, respectively.

As for the asset space, the borrowing limit is set to be the each type’s own simulated
average earnings, ¯

A

k. The upper bound for the asset spaced is chosen such that in simulations
no individual’s asset holdings come close to this upper bound, A

t

. We choose grids in the a

t

47Since z1,t and z2,t are in log values polynomially spaced grid points along these dimensions per-
formed worse.

75



Table A.3 – Additional Parameter Estimates for Estimated Specification
Specification: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Benchmark

model

HIP order 1 1 0 1 1 1 1 0 1 1 0
AR(1) 2 1 2 2 2 2 2 2 2 2 1
RW no no no no no no yes no no no no
Nonemp. shock yes yes yes no yes yes no no yes yes no
Heterog. variances? yes yes yes yes yes yes yes yes no yes no
Prob. age/inc. yes/yes yes/yes yes/yes yes/yes yes/no no/yes yes/yes yes/yes yes/yes no/no yes/yes

Parameters

µ1 0.319 -0.599 0.179 -2.162 0.569 0.300 0.803 -2.239 0.287 0.247 -2.999
µ2 -0.576 — -0.436 -1.445 -3.993 -1.177 -1.999 -2.028 -0.190 -3.992 —
µ3 — — — — — — -1.275 — — — —
Shock probabilities:
a1 ⇥1 -2.987 -0.810 -1.797 -2.427 -1.893 -2.390 -2.630 -2.222 -1.730 -1.265 -0.874
b1 ⇥t 0.024 0.765 -0.146 0.021 0.163 — -0.927 -0.061 -1.397 — -1.987
c1 ⇥y

t�1 0.783 -1.682 0.179 -1.661 — 0.913 -0.049 -2.119 -0.349 — -2.360
d1 ⇥t⇥ y

t�1 0.680 -1.288 0.193 0.024 — — 0.435 0.252 2.056 — 0.188
a2 ⇥1 -0.561 — -0.972 -2.033 -4.041 -1.069 -2.188 -3.971 -0.837 -3.809 —
b2 ⇥t 0.711 — 0.166 -1.019 0.190 — 0.381 0.139 -0.171 — —
c2 ⇥y

t�1 -1.934 — -0.950 -3.025 — -3.186 -1.487 0.056 -0.906 — —
d2 ⇥t⇥ y

t�1 -1.289 — 0.120 1.341 — — 0.178 -0.357 -0.050 — —
a3 ⇥1 — — — — — — -0.164 — — — —
b3 ⇥t — — — — — — -0.484 — — — —
c3 ⇥y

t

— — — — — — -2.874 — — — —
d3 ⇥t⇥ y

t

— — — — — — 0.696 — — — —
� 0.075 — 0.096 — 2.337 0.029 — — 0.146 1.193 —
a

⌫

⇥1 -3.131 — -3.011 — -1.163 -4.044 — — -3.492 -3.430 —
b

⌫

⇥t -0.200 — 0.432 — -0.958 — — — 0.071 — —
c

⌫

⇥y

t

-3.908 — -4.182 — — -5.346 — — -4.377 — —
d

⌫

⇥t⇥ y

t

-2.946 — -3.150 — — — — — -4.594 — —

dimension to be polynomial spaced between a
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, with an explicit point at
a

t

= 0. We have 60 grid points for the asset space.

D.1.2 Integration and Interpolation
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We define the conditional expectation function:
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48The budget constraint and the other equations that properly define the value function are omitted
here for simplicity.
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Figure A.27 – 3-D Plot of Mixing Probabilities
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(c) Shock Probability p⌫ for ⌫t
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Then the value function becomes:

V

i,k

t

�

a

i

t

, z

i

1,t, z
i

2,t

�

= max

c

i
t,a

i
t+1

u(c

t

) + �

˜

V

i,k

t+1

�

a

i

t+1, z
i

1,t, z
i

2,t

�

,

which reduces the interpolation to only along the a

t+1 dimension, for which we use one-
dimensional spline interpolation.

The conditional expectation, ˜
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involves integration over the innovations to both of the persistent components, ⌘i1,t and ⌘i2,t and
an nonemployment shock, ⌫i

t

. Nonemployment shocks are functions of
�
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2,t+1

�

. Then for
given

�

z
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we first take the expectation over ⌫i
t

. For this purpose, we approximate the
nonemployment shocks using the Gauss-Laguerre abscissas and weights which is the quadra-
ture that is used for exponential distribution. In particular, let
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= 0. Note that the weights depend
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. Then, we define the conditional expectation function over nonemployment
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shocks as the following:
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Innovations to the persistent components, ⌘1,t and ⌘2,t are drawn from a mixture of two nor-
mal distributions, one of which is a degenerate distribution. The non-degenerate normal distri-
bution is approximated using the Gauss-Hermite abscissas and weights. Let
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be the Gauss-Hermite abscissas and weights for the ⌘
i,t

including the degenerate distribution (xnj+1
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and w
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). Then, the conditional expectation
function over the shocks to the persistent components is defined as:

˜

V

i,k

t+1

�

a

i

t+1, z
i

1,t, z
i

2,t

�

= E
t

h

V

i,k

t+1

�

a

i

t+1, z
i

1,t+1, z
i

2,t+1

�

| zi1,t, zi2,t
i

=

n1+1
X

j1

n1+1
X

j1

w

j1
1,tw

j2
2,tV

i,k

t+1

⇣

a

i

t+1, ⇢1z
i

1,t + x

j1
1,t, ⇢2z

i

2,t + x

j2
2,t

⌘

.

The above part requires interpolation over
�

z

i

1,t+1, z
i

2,t+1

�

for which we use 2-dimensional
nested cubic spline. We use 7 abscissas for innovations to the each of the persistent component.

D.1.3 Simulating the Consumption Path

The policy function for the consumption decision has three continuous variables, asset hold-
ings, and two persistent components, a

t

, z1,t, z2,t. To interpolate the consumption decision we
employ the 3-dimensional nested cubic spline interpolation. We do not need an additional state
for the nonemployment shocks since they are transitory in nature. Namely, we store the con-
sumption decision in the value function iteration step for only the case of full-year nonemployed
shocks. In simulating the nonemployment shocks less than a year, we just add the difference in
labor earnings due to the shorter nonemployment spell to the asset holdings of the individuals,
which can be thought as cash-on-hand. This allows us to interpolate the consumption decision
only over three dimensions, (a

t

, z1,t, z2,t) rather than 4-dimensional interpolation.

D.1.4 Other Computational Details

We use MPI for the parallel programming. In particular, we use one core for each worker
type�k (with a specific

�
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k

,�

k
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k

z1
,�

k

z2

�

). The values of
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and the number of
individuals to be simulated for each
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�type are determined using the Gauss-
Hermite abscissas and weights, respectively. We have four

�

↵

k

,�

k

�

�types, three �k
z1
�types,

and three �k
z2
�types. In total, we have 4⇥3⇥3 = 36 ex-ante types of workers and used 36 cores

to compute for 36 different value functions. Once each core finishes simulating consumption
path for its own type of worker, the main core gathers all the simulated data and compute
statistics for the entire economy. It takes 4-5 mins to solve and simulate the model for a given
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discount factor. It usually takes 6-7 iterations to converge to the discount factor that matches
the wealth to income ratio observed in the data.

D.1.5 Welfare Analysis

The formula for welfare cost, �, is given by

� = 1�
✓

V

V

Complete

◆1/(1��)

,

where V is the expected lifetime utility at time 0 who has not drawn her income shocks for the
first period yet, V

Complete

is the expected lifetime utility in the existence of financial markets
against idiosyncratic risk (complete markets), and � is the coefficient of relative risk aversion.

D.2 Derivation of the Risk Premium, Equation (15)
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Taking a first-order Taylor-series approximation to the left hand side and fourth order approx-
imation to the right hand side we get:
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Observing that the second term on the right hand side is zero when E(˜�) = 0, and rearranging
yields:
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where m

n

denotes the n

th central moment of ˜�. To convert these into statistics that are reported
in the paper, we write m2 = �

2
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, where s
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is the skewness coefficient, and
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, where k
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is kurtosis. With this notation, and assuming a CRRA utility function
with curvature �, we get:
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which is equation (15). This can also be written as:
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