
A Appendix: Estimates of the HIP Model in the Literature

Table 4 presents the estimates of the HIP model from the U.S. data in the previous literature. As can
be seen here, the estimates of 2 range from 0.00018 in Lillard and Weiss (1979) to 0.00041 in Haider
(2001). The former paper estimates a separate income process for each Önely deÖned occupation category
(such as chemists, psychologists, etc.), which could be partly responsible for the smaller estimate of proÖle
heterogeneity. However, all the estimates of 2 are statistically signiÖcant, and the latter two papersí point
estimates are rather close to each other. Baker also reports estimates as high as 0.00082; his lowest estimate
is 0.00031. Second, the persistence parameter in these studies is around 0.6 to 0.7, indicating signiÖcantly
lower persistence than a unit root.

B Appendix: Computational Algorithm

This appendix describes the algorithm used to solve the consumption-savings problem described in Section 3.
The Örst point to observe is that since the value function does not explicitly depend on the type of individual
we need to solve for only one value function for all individuals. The true type only determines the probability
distribution of income (induced by the probability distributions of  and " for a given
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), which then

determines the probability distribution of the belief vector, bSitjt1; for a given agent. In turn, this determines
which region of the state space will be most visited for a given individual. To solve the model for a large
number of types, we need to get a good approximation of the value function for the union of the supports for
these di§erent types, which is the challenging part.

We Örst describe the algorithm for  = 0 so that all individuals begin life with the same prior information.
A slight modiÖcation then will solve the model for di§erent  values. The critical part of the algorithm is
the construction of a convenient grid over which the dynamic problem is solved. Once this is accomplished,
solving the model is straightforward.

Step 0: Grid construction

1. Draw I types
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; i = 1; ::; I


from a Normal distribution with second moments (2; 

2
 ; )

reported in Table 1. In the baseline case, we chose I = 1000:

2. For each i; simulate J income paths
n
eyijt ; t = 1; ::; T ; j = 1; ::; J

o
using equation (2) to obtain an

empirical approximation to the distribution of eyit: We chose J = 100:

3. For each of the N  I  J income paths, use equation (3) to obtain a sequence of bSijtjt1 for t = 1; ::; T:
Thus, for each t, we have N = 100; 000 points distributed over the 3-dimensional space of beliefs,

(bitjt1; b
i

tjt1; bzitjt1). Instead of choosing independent grids in b
i
tjt1, ; b

i

tjt1; and bztjt1 directions and
taking the Cartesian product of these intervals, we directly choose points in this 3-dimensional space as
follows. We divide the space [bmin; bmax] [bmin; bmax] [bzmin; bzmax] (with appropriately chosen lower
and upper bounds) into cubes by taking 21 points in each direction (and get 20 20 20 cubes). For
every t; if there are any points (among the 100,000 realizations of bSijtjt1) that fall into a cube, we assign
a grid point to the center of that cube (and eliminate all empty cubes). This procedure picks a subset
of the 3-dimensional space that contains state points that have a non-negligible probability of being
realized when we simulate the model. (It is important to emphasize that we do not do this for e¢ciency
reasons. Our experience is that attempts at solving for the value function over a Cartesian state space
runs into a number of di¢culties, and this is one approach we found to work.) We enumerate these
triplets feSqt = (b; b; bz)q; q = 1; ::; Qtg, where Qt is the total number of non-empty cubes and hence grid
points at age t (From this point on, we drop the reference to t and describe the grid construction for a
given age. The same procedure is repeated for each t:)

4. The grid for eyij needs to be consistent with the probability distribution implied by the type of individual,
otherwise one runs into a number of problems.27 However, since
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is not a state variable it is

27For example, if we attempt to solve the dynamic problem with a eyhit that is much larger than what would be
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not possible to literally have the grid for eyij depend on the type. Instead then, we choose a di§erent
grid for each possible belief vector, eSq; deÖned as yqgrid = [y

q
min; y

q
max] ; where the bounds are deÖned as

exp(HeSq 3(eyq)); HeSq is the mean income and (eyq) is the standard deviation given in equation (5).
In other words, these bounds deÖne a three standard deviation conÖdence interval for income through
equation (5) given beliefs eSq: We take 8 equally spaced points for each income grid. (Using 20 points
did not make a noticeable di§erence in results.) We repeat the same steps for each t:

5. Unlike the other 4 state variables, wealth does not a§ect and is not a§ected by the learning process.
Thus, we take a Öxed wealth gridóthat is, one that does not depend on beliefs or incomeówith 12
points more densely spaced near the borrowing constraint. (Using 20 points did not make a noticeable
di§erence in results.) At a given age, the Önal grid is the Cartesian product of this wealth grid and the
(4-dimensional) grid (yqgrid; eSq). So the problem is solved on (12 8Qt) grid points, where Qt ranges
from 240 to 1100 over the lifecycle and averages 830.

Step 1: Solving the dynamic problem

1. The dynamic problem is solved using the Bellman equation approach. We solve the problem for each
point on the random grid at age t:

2. The non-Cartesian structure of the state space rules out a number of multi-dimensional interpolation
methods such as splines, Chebyshev polynomials that typically require Cartesian grids in more than
one dimension. Instead, we approximate the value function with a combination of polynomial functions
(up to the 4th power) and other functions (such as logs and fractional powers) of the state variables
including various interaction terms between them (a total of 162 terms used in the baseline model).
After solving the Bellman equation at age t; we regress the values of the value function at the grid
points on these functions of the state variables. These coe¢cients are then used for the interpolations
necessary to evaluate the expectation when solving the period t 1 problem.

3. After the model is solved, we simulate the decision rules for a large number of individuals. For simplicity
we used the same I types drawn above and theN simulated income paths to obtain consumption-savings
paths.
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implied by the individualís

i; i


, the Bayesian updating results in next periodís beliefs that are substantially away

from next periodís grid for eSqt+1, because the latter is constructed based on income realizations that are going to be
observed in the actual solution. As a result, one needs to extrapolate next periodís value function which often yields
extremely inaccurate results (despite the fact that these far-o§ points have low probability). Considering a eyhit that is
much smaller than what is consistent with the type, results in similar problems as well as creating further problems
with infeasible borrowing constraints.
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