THE NATURE OF COUNTERCYCLICAL INCOME RISK

Fatih Guvenen

Minnesota and NBER

Serdar Ozkan

Federal Reserve Board

Jae Song

Social Security Administration

April 28, 2013

Guvenen, Ozkan, Song	enen, Ozkan, So	ong
----------------------	-----------------	-----

EARNINGS OF US MALE WORKERS

From 2007 to 2009:

- Average change in labor earnings (of male workers): 6.5%
 - Largest drop in postwar period

At the same time:

- One-in-four had earnings rise by 15+% (log points)
- One-in-ten had earnings rise by 50+%
- One-in-ten had earnings fall by 60+%
- In fact, median earnings growth was slightly positive: +0.1%

A (10) A (10) A (10)

EARNINGS OF US MALE WORKERS

From 2007 to 2009:

- Average change in labor earnings (of male workers): 6.5%
 - Largest drop in postwar period

At the same time:

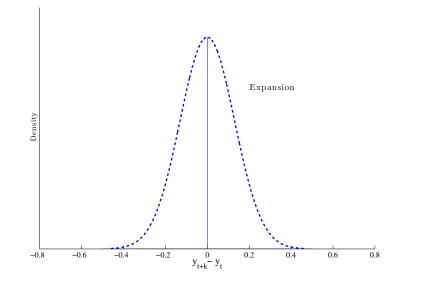
- One-in-four had earnings rise by 15+% (log points)
- One-in-ten had earnings rise by 50+%
- One-in-ten had earnings fall by 60+%
- In fact, median earnings growth was slightly positive: +0.1%

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

EARNINGS OF US MALE WORKERS

From 2007 to 2009:

- Average change in labor earnings (of male workers): 6.5%
 - Largest drop in postwar period

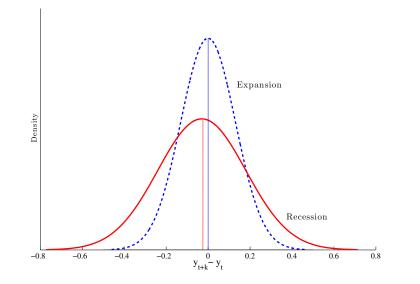

At the same time:

- One-in-four had earnings rise by 15+% (log points)
- One-in-ten had earnings rise by 50+%
- One-in-ten had earnings fall by 60+%
- In fact, median earnings growth was slightly positive: +0.1%

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Ex-Post: How does the distribution of income shocks change over the business cycle?
 - e.g., are idiosyncratic shocks cyclical?

Recessions: Shock to Variance?



Guvenen, Ozkan, Song

April 28, 2013 4 / 65

< 61

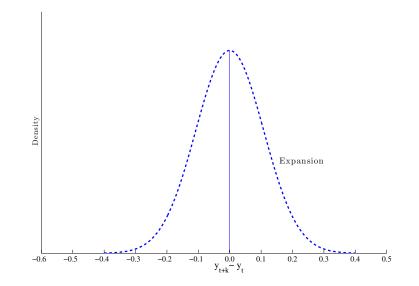
Recessions: Shock to Variance?

Guvenen, Ozkan, Song

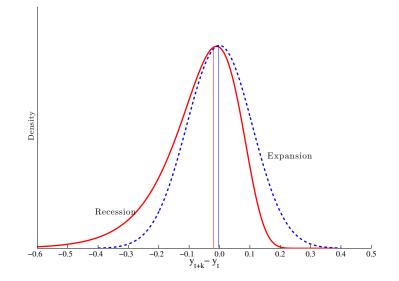
COUNTERCYCLICAL VARIANCE

- Constantinides and Duffie (1996): countercyclical variance can generate interesting and plausible asset pricing behavior.
- Storesletten et al (2004):
 - Specify an AR(1) with time-varying innovation variance.
 - Estimate σ_n^2 to be three times higher in recessions.
- Mankiw (1986): countercyclical (left-)skewness can generate a large equity premium.

COUNTERCYCLICAL VARIANCE


- Constantinides and Duffie (1996): countercyclical variance can generate interesting and plausible asset pricing behavior.
- Storesletten et al (2004):
 - Specify an AR(1) with time-varying innovation variance.
 - Estimate σ_n^2 to be three times higher in recessions.
- Mankiw (1986): countercyclical (left-)skewness can generate a large equity premium.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


COUNTERCYCLICAL VARIANCE

- Constantinides and Duffie (1996): countercyclical variance can generate interesting and plausible asset pricing behavior.
- Storesletten et al (2004):
 - Specify an AR(1) with time-varying innovation variance.
 - Estimate σ_n^2 to be three times higher in recessions.
- Mankiw (1986): countercyclical (left-)skewness can generate a large equity premium.

RECESSIONS: SHOCK TO SKEWNESS?

RECESSIONS: SHOCK TO SKEWNESS?

Guvenen, Ozkan, Song

▲ ▶ ▲ 클 ▶ 클 ∽ ۹.0 April 28, 2013 8 / 65

A (10) A (10) A (10)

Ex-Post: How does the distribution of income growth change over the business cycle?

- Difference in difference in difference!
- Very difficult to study without a very large data set.

A (10) A (10)

Ex-Post: How does the distribution of income growth change over the business cycle?

Difference in difference in difference!

Very difficult to study without a very large data set.

A (10) A (10)

- Ex-Post: How does the distribution of income growth change over the business cycle?
 - Difference in difference in difference!
 - Very difficult to study without a very large data set.

- Ex-Post: How does the distribution of income growth change over the business cycle?
 - Difference in difference in difference!
 - Very difficult to answer without a very large data set.
- Ex-Ante: Are there any observable characteristics that predict outcomes over the business cycle?

• SSA's Master Earnings File:

- contains all US individuals with a Social Security number.
- Draw a representative sample of US males covering 33 years: 1978 to 2010
- Labor earnings data from W-2 forms.
 - * Self-employed excluded.
- We focus on individuals aged 25-60.

不同 トイモトイモ

• SSA's Master Earnings File:

- contains all US individuals with a Social Security number.
- Draw a representative sample of US males covering 33 years: 1978 to 2010
- Labor earnings data from W-2 forms.
 - * Self-employed excluded.
- We focus on individuals aged 25-60.

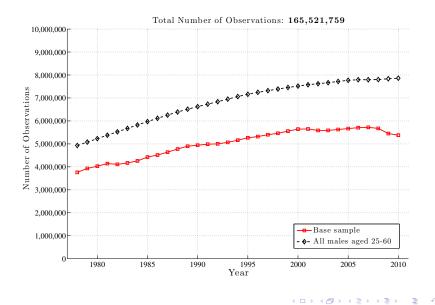
不同 トイモトイモ

• SSA's Master Earnings File:

- contains all US individuals with a Social Security number.
- Draw a representative sample of US males covering 33 years: 1978 to 2010
- Labor earnings data from W-2 forms.
 - ★ Self-employed excluded.
- We focus on individuals aged 25-60.

不同 いくきいくき

• SSA's Master Earnings File:


- contains all US individuals with a Social Security number.
- Draw a representative sample of US males covering 33 years: 1978 to 2010
- Labor earnings data from W-2 forms.
 - ★ Self-employed excluded.

• We focus on individuals aged 25-60.

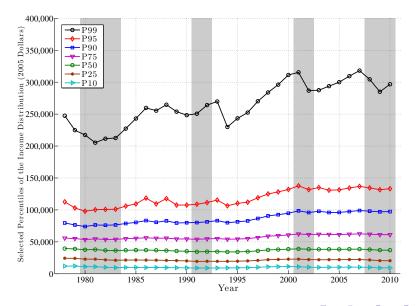
• SSA's Master Earnings File:

- contains all US individuals with a Social Security number.
- Draw a representative sample of US males covering 33 years: 1978 to 2010
- Labor earnings data from W-2 forms.
 - ★ Self-employed excluded.
- We focus on individuals aged 25-60.

NUMBER OF OBSERVATIONS

Guvenen, Ozkan, Song

April 28, 2013 12 / 65


- Very large sample size. Allows us to study variation between and within very finely defined groups.
 - E.g., one such group contains individuals who (as of 2006)
 - * are between 35 and 39.
 - had average income between \$32,000 and \$33,400.
 - had income growth rate between 1.30% to 1.49% per year.
- No survey response error (possible under-reporting).
- No sample attrition.
 - Allows us to control for compositional changes over the cycle.
- No top-coding:
 - ► In PSID, CPS, etc., using extreme observations is tricky.
 - ► Here, income observations in tens of millions of dollars per year.

- Very large sample size. Allows us to study variation between and within very finely defined groups.
 - E.g., one such group contains individuals who (as of 2006)
 - * are between 35 and 39.
 - had average income between \$32,000 and \$33,400.
 - ★ had income growth rate between 1.30% to 1.49% per year.
- No survey response error (possible under-reporting).
- No sample attrition.
 - Allows us to control for compositional changes over the cycle.
- No top-coding:
 - ► In PSID, CPS, etc., using extreme observations is tricky.
 - ► Here, income observations in tens of millions of dollars per year.

- Very large sample size. Allows us to study variation between and within very finely defined groups.
 - E.g., one such group contains individuals who (as of 2006)
 - * are between 35 and 39.
 - had average income between \$32,000 and \$33,400.
 - ★ had income growth rate between 1.30% to 1.49% per year.
- No survey response error (possible under-reporting).
- No sample attrition.
 - Allows us to control for compositional changes over the cycle.
- No top-coding:
 - ► In PSID, CPS, etc., using extreme observations is tricky.
 - ► Here, income observations in tens of millions of dollars per year.

- Very large sample size. Allows us to study variation between and within very finely defined groups.
 - E.g., one such group contains individuals who (as of 2006)
 - ★ are between 35 and 39.
 - had average income between \$32,000 and \$33,400.
 - ★ had income growth rate between 1.30% to 1.49% per year.
- No survey response error (possible under-reporting).
- No sample attrition.
 - Allows us to control for compositional changes over the cycle.
- No top-coding:
 - ► In PSID, CPS, etc., using extreme observations is tricky.
 - ► Here, income observations in tens of millions of dollars per year.

PERCENTILES OF LABOR EARNINGS DISTRIBUTION

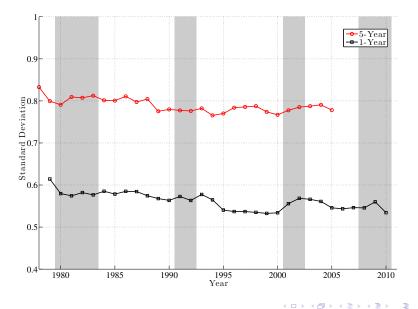
Guvenen, Ozkan, Song

April 28, 2013 14 / 65

Business Cycles: Bird's Eye View

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ● ●

MALE UNEMPLOYMENT RATE


Guvenen, Ozkan, Song

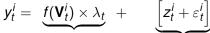
April 28, 2013 16 / 65

э

・ロト ・ 四ト ・ ヨト ・ ヨト …

VARIANCE OF Δy^i and $\Delta_5 y^i$

Guvenen, Ozkan, Song


Cyclical Income Risk

April 28, 2013 17 / 65

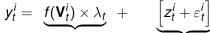
Decomposing Income Shocks

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ● ●

AN EMPIRICAL FRAMEWORK

factor structure

stochastic component


$$z_t^i = z_{t-1}^i + \eta_t^i,$$

where $\varepsilon_t^i \sim F(\varepsilon | \mathbf{V}_t^i, \lambda_t)$ $\eta_t^i \sim G(\eta | \mathbf{V}_t^i, \lambda_t)$

- y_t^i : log labor earnings (net of life cycle effects)
- \mathbf{V}_{t}^{i} : Vector of individual-specific characteristics.
- λ_t : Aggregate shock.

(1)

AN EMPIRICAL FRAMEWORK

factor structure

stochastic component

$$z_t^i = z_{t-1}^i + \eta_t^i,$$

where
$$\varepsilon_t^i \sim F(\varepsilon | \mathbf{V}_t^i, \lambda_t)$$
 $\eta_t^i \sim G(\eta | \mathbf{V}_t^i, \lambda_t)$

- y_t^{i} : log labor earnings (net of life cycle effects)
- \mathbf{V}_{t}^{i} : Vector of individual-specific characteristics.
- λ_t : Aggregate shock.

(1)

WITHIN-GROUP DISPERSION

$$y_{t+k}^{i} - y_{t}^{i} = f(\mathbf{V}_{t}^{i})(\lambda_{t+k} - \lambda_{t})$$

$$+ [\eta_{t+k} + \dots + \eta_{t+1})] + (\varepsilon_{t+k}^{i} - \varepsilon_{t}^{i}).$$

$$(2)$$

For some *t* compute:

$$\Rightarrow \operatorname{var}(y_{t+k}^{i} - y_{t}^{i} | \mathbf{V}_{t}^{i}) = \underbrace{\left(\sum_{s=1}^{k} \operatorname{var}(\eta_{t+s} | \mathbf{V}_{t}^{i})\right)}_{k \text{ terms}} + \underbrace{\left(\operatorname{var}(\varepsilon_{t} | \mathbf{V}_{t}^{i}) + \operatorname{var}(\varepsilon_{t+k} | \mathbf{V}_{t}^{i})\right)}_{2 \text{ terms}}.$$

- k = 1: mostly transitory variance
- Large k: more persistent variance

< 6 k

WITHIN-GROUP DISPERSION

$$y_{t+k}^{i} - y_{t}^{i} = f(\mathbf{V}_{t}^{i})(\lambda_{t+k} - \lambda_{t})$$

$$+ [\eta_{t+k} + \dots + \eta_{t+1})] + (\varepsilon_{t+k}^{i} - \varepsilon_{t}^{i}).$$

$$(2)$$

For some *t* compute:

$$\Rightarrow \operatorname{var}(y_{t+k}^{i} - y_{t}^{i} | \mathbf{V}_{t}^{i}) = \underbrace{\left(\sum_{s=1}^{k} \operatorname{var}(\eta_{t+s} | \mathbf{V}_{t}^{i})\right)}_{k \text{ terms}} + \underbrace{\left(\operatorname{var}(\varepsilon_{t} | \mathbf{V}_{t}^{i}) + \operatorname{var}(\varepsilon_{t+k} | \mathbf{V}_{t}^{i})\right)}_{2 \text{ terms}}.$$

• *k* = 1: mostly transitory variance

• Large k: more persistent variance

A .

WITHIN-GROUP DISPERSION

$$y_{t+k}^{i} - y_{t}^{i} = f(\mathbf{V}_{t}^{i})(\lambda_{t+k} - \lambda_{t})$$

$$+ [\eta_{t+k} + \dots + \eta_{t+1})] + (\varepsilon_{t+k}^{i} - \varepsilon_{t}^{i}).$$

$$(2)$$

For some t compute:

$$\Rightarrow \operatorname{var}(y_{t+k}^{i} - y_{t}^{i} | \mathbf{V}_{t}^{i}) = \underbrace{\left(\sum_{s=1}^{k} \operatorname{var}(\eta_{t+s} | \mathbf{V}_{t}^{i})\right)}_{k \text{ terms}} + \underbrace{\left(\operatorname{var}(\varepsilon_{t} | \mathbf{V}_{t}^{i}) + \operatorname{var}(\varepsilon_{t+k} | \mathbf{V}_{t}^{i})\right)}_{2 \text{ terms}}.$$

- k = 1: mostly transitory variance
- Large k: more persistent variance

Within-Group Variation

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A GRAPHICAL CONSTRUCT

• Divide the population into 7 age groups: 25–29, 30–34,..., 55–60.

• For every worker, compute
$$\overline{Y}_{t-1}^{i} \equiv (\frac{1}{5}) \sum_{s=1}^{5} \left(\frac{\widetilde{Y}_{t-s}^{i}}{\overline{d}_{t-s}} \right)$$
.

• For a given episode starting in *t*, within each age group:

• rank individuals according to \overline{Y}_{t-1} .

• Against each quantile of \overline{Y}_{t-1} on the x-axis:

▶ plot conditional distribution $\mathbb{F}(y_{t+k} - y_t | \overline{Y}_{t-1})$ on the y-axis.

4 D N 4 B N 4 B N 4 B

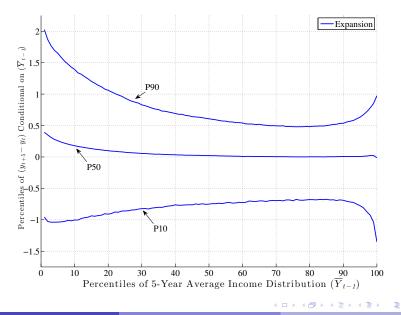
A GRAPHICAL CONSTRUCT

• Divide the population into 7 age groups: 25–29, 30–34,..., 55–60.

• For every worker, compute
$$\overline{Y}_{t-1}^{i} \equiv (\frac{1}{5}) \sum_{s=1}^{5} \left(\frac{\widetilde{Y}_{t-s}^{i}}{\overline{d}_{t-s}} \right)$$
.

- For a given episode starting in *t*, within each age group:
 - rank individuals according to \overline{Y}_{t-1} .
- Against each quantile of \overline{Y}_{t-1} on the x-axis:

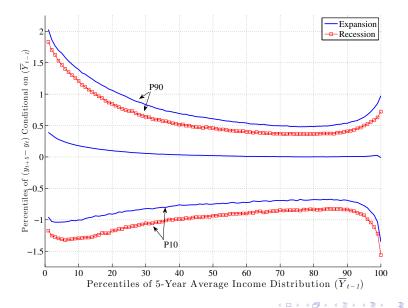
▶ plot conditional distribution $\mathbb{F}(y_{t+k} - y_t | \overline{Y}_{t-1})$ on the y-axis.


A GRAPHICAL CONSTRUCT

• Divide the population into 7 age groups: 25–29, 30–34,..., 55–60.

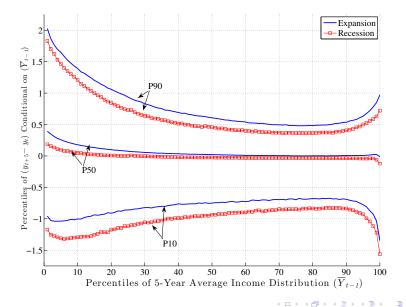
• For every worker, compute
$$\overline{Y}_{t-1}^{i} \equiv (\frac{1}{5}) \sum_{s=1}^{5} \left(\frac{\widetilde{Y}_{t-s}^{i}}{\overline{d}_{t-s}} \right)$$
.

- For a given episode starting in *t*, within each age group:
 - rank individuals according to \overline{Y}_{t-1} .
- Against each quantile of \overline{Y}_{t-1} on the x-axis:
 - ▶ plot conditional distribution $\mathbb{F}(y_{t+k} y_t | \overline{Y}_{t-1})$ on the y-axis.


DISTRIBUTIONS OF PERSISTENT SHOCKS

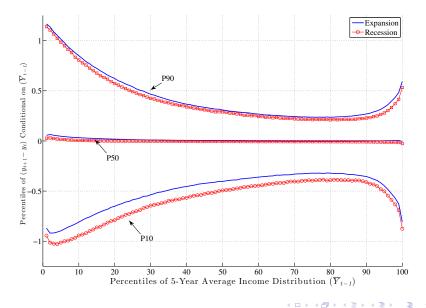
Guvenen, Ozkan, Song

April 28, 2013 23 / 65


DISTRIBUTIONS OF PERSISTENT SHOCKS

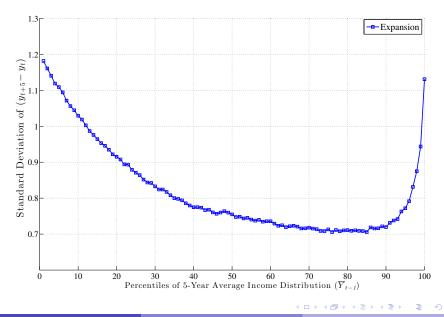
Guvenen, Ozkan, Song

April 28, 2013 24 / 65


DISTRIBUTIONS OF PERSISTENT SHOCKS

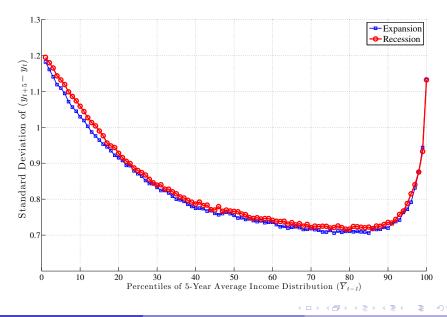
Guvenen, Ozkan, Song

April 28, 2013 25 / 65


DISTRIBUTIONS OF TRANSITORY SHOCKS

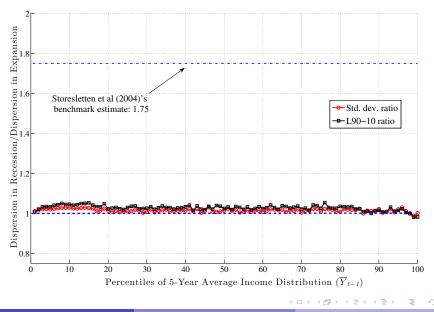
Guvenen, Ozkan, Song

April 28, 2013 26 / 65


STANDARD DEVIATION OF PERSISTENT SHOCKS

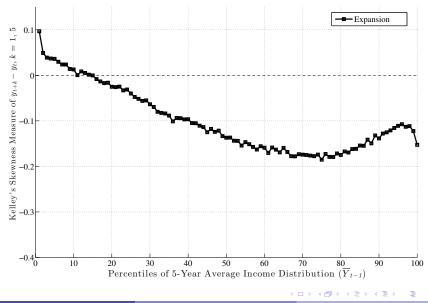
Guvenen, Ozkan, Song

April 28, 2013 27 / 65

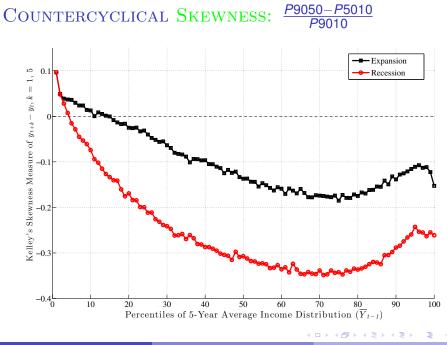

STANDARD DEVIATION OF PERSISTENT SHOCKS

Guvenen, Ozkan, Song

April 28, 2013 28 / 65

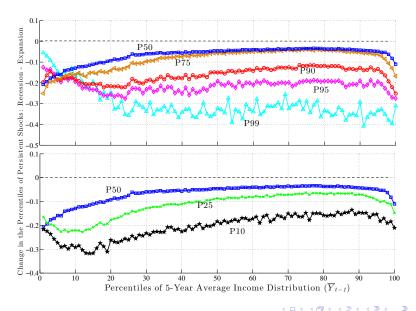

COUNTERCYCLICAL VARIANCE?

Guvenen, Ozkan, Song


April 28, 2013 29 / 65

COUNTERCYCLICAL SKEWNESS:

<u>P9050-P5010</u> P9010


Guvenen, Ozkan, Song

Guvenen, Ozkan, Song

April 28, 2013 31 / 65

COMPRESSION AT TOP. EXPANSION AT BOTTOM

Guvenen, Ozkan, Song

April 28, 2013 32 / 65

Recessions are:

- mostly about countercyclical left-skewness.
- Not countercyclical variance.
- The top end of shock disribution collapses. The bottom end expands.
- More pessimistic conclusion than Storesletten et al (2004).
- More similar to Mankiw's (1986) modeling.

- Recessions are:
 - mostly about countercyclical left-skewness.
 - Not countercyclical variance.
- The top end of shock disribution collapses. The bottom end expands.
- More pessimistic conclusion than Storesletten et al (2004).
- More similar to Mankiw's (1986) modeling.

- Recessions are:
 - mostly about countercyclical left-skewness.
 - Not countercyclical variance.
- The top end of shock disribution collapses. The bottom end expands.
- More pessimistic conclusion than Storesletten et al (2004).
- More similar to Mankiw's (1986) modeling.

- Recessions are:
 - mostly about countercyclical left-skewness.
 - Not countercyclical variance.
- The top end of shock disribution collapses. The bottom end expands.
- More pessimistic conclusion than Storesletten et al (2004).
- More similar to Mankiw's (1986) modeling.

Between-Group Variation

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

BETWEEN-GROUP DISPERSION

$$\mathbb{E}(\mathbf{y}_{t+k}^{i} - \mathbf{y}_{t}^{i} | \mathbf{V}_{t}^{i}) = f(\mathbf{V}_{t}^{i})(\lambda_{t+k} - \lambda_{t}) + \underbrace{\mathbb{E}(\eta_{t+k} + \dots + \eta_{t+1} | \mathbf{V}_{t}^{i})}_{=0} + \underbrace{\mathbb{E}(\varepsilon_{t+k}^{i} - \varepsilon_{t}^{i} | \mathbf{V}_{t}^{i})}_{=0}$$

$$\mathbb{E}(\mathbf{y}_{t+k}^{i} - \mathbf{y}_{t}^{i} | \mathbf{V}_{t}^{i}) = f(\mathbf{V}_{t}^{i})(\lambda_{t+k} - \lambda_{t}).$$
(3)

Guvenen, Ozkan, Song

Cyclical Income Risk

April 28, 2013 35 / 65

2

イロト イヨト イヨト イヨト

BETWEEN-GROUP DISPERSION WITH $\mathbf{V}_t \equiv \overline{\mathbf{Y}}_{t-1}$

• Against each quantile of \overline{Y}_{t-1} , plot:

•
$$\mathbb{E}_i \left(\mathbf{y}_{t+k}^i - \mathbf{y}_t^i | \overline{\mathbf{Y}}_{t-1}^i \right)$$
 on the y-axis.

• But, this measure must exclude observations with $Y_t^i = 0$ or $Y_{t+k}^i = 0$. Also plot:

$$\blacktriangleright \log \mathbb{E}_i \left(Y_{t+k}^i | \overline{Y}_{t-1} \right) - \log \mathbb{E}_i \left(Y_t^i | \overline{Y}_{t-1} \right).$$

BETWEEN-GROUP DISPERSION WITH $\mathbf{V}_t \equiv \overline{\mathbf{Y}}_{t-1}$

• Against each quantile of \overline{Y}_{t-1} , plot:

•
$$\mathbb{E}_i \left(\mathbf{y}_{t+k}^i - \mathbf{y}_t^i | \overline{\mathbf{Y}}_{t-1}^i \right)$$
 on the y-axis.

• But, this measure must exclude observations with $Y_t^i = 0$ or $Y_{t+k}^i = 0$. Also plot:

$$\blacktriangleright \log \mathbb{E}_i \left(\mathbf{Y}_{t+k}^i | \overline{\mathbf{Y}}_{t-1} \right) - \log \mathbb{E}_i \left(\mathbf{Y}_t^i | \overline{\mathbf{Y}}_{t-1} \right).$$

WHAT CAN THIS GRAPH TELL US?

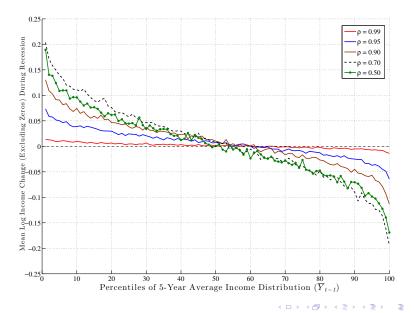
• With countercyclical permanent shocks only, the graph will be flat.

- With a factor structure favoring high-income individuals, it will be upward-sloping.
- With mean-reverting shocks only (e.g., AR(1)), it will slope downward.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

WHAT CAN THIS GRAPH TELL US?

- With countercyclical permanent shocks only, the graph will be flat.
- With a factor structure favoring high-income individuals, it will be upward-sloping.
- With mean-reverting shocks only (e.g., AR(1)), it will slope downward.

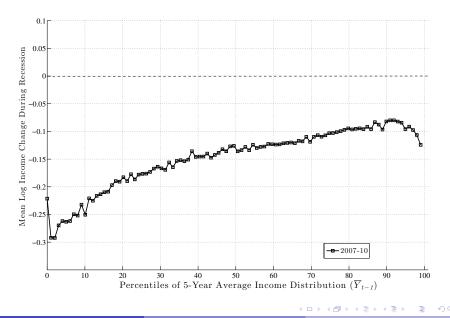

< ロ > < 同 > < 回 > < 回 >

WHAT CAN THIS GRAPH TELL US?

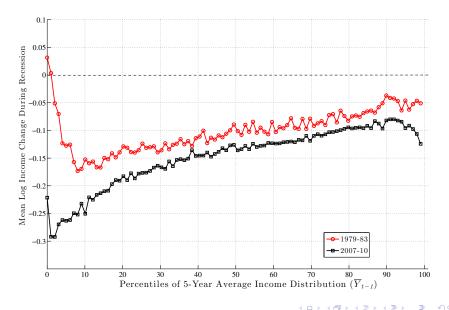
- With countercyclical permanent shocks only, the graph will be flat.
- With a factor structure favoring high-income individuals, it will be upward-sloping.
- With mean-reverting shocks only (e.g., AR(1)), it will slope downward.

A D N A B N A B N A B N

CAUTION: MEAN REVERSION

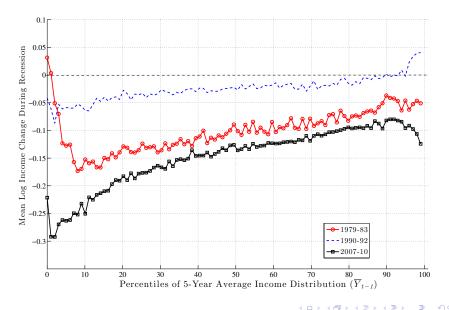


Guvenen, Ozkan, Song

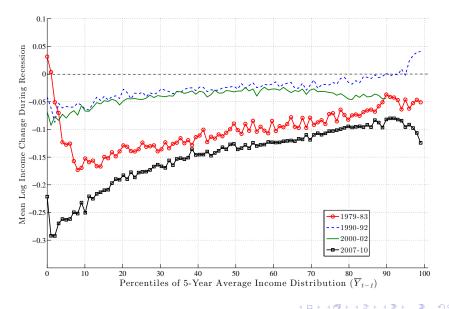

Cyclical Income Risk

April 28, 2013 38 / 65

Empirical Results: Recessions

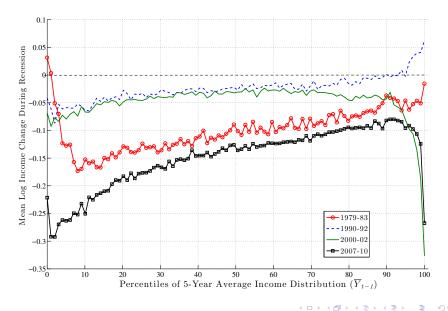


Guvenen, Ozkan, Song


Guvenen, Ozkan, Song

April 28, 2013 41 / 65

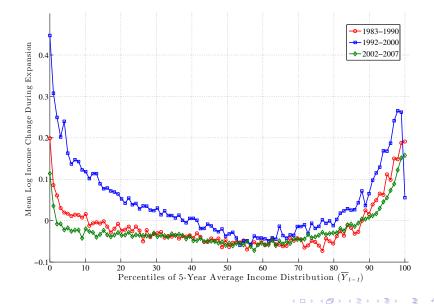
Guvenen, Ozkan, Song


April 28, 2013 42 / 65

Guvenen, Ozkan, Song

April 28, 2013 43 / 65

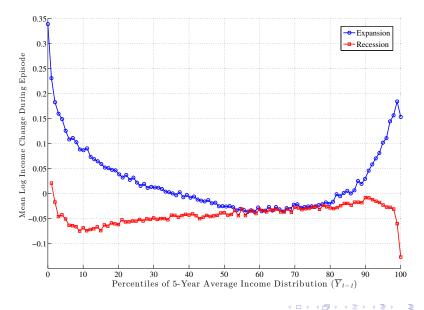
How About the Top 1%?


Guvenen, Ozkan, Song

April 28, 2013 44 / 65

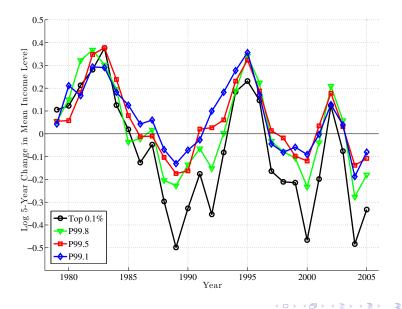
Empirical Results: Expansions

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで


THREE EXPANSIONS: PRIME-AGE MALES

Guvenen, Ozkan, Song

April 28, 2013 46 / 65


PUTTING TOGETHER: EXPANSIONS VS RECESSIONS

Guvenen, Ozkan, Song

April 28, 2013 47/65

5-Year Income Growth, Top 1%

Guvenen, Ozkan, Song

April 28, 2013 48 / 65

CONCLUSIONS

- Idiosyncratic shocks: During recessions
 - Top half of the shock distribution gets compressed.
 - Bottom half gets wider.
 - \blacktriangleright \Rightarrow Shock distributions become more negatively skewed.
- Substantial predictable component of fortunes over the business cycle.
- Very large and persistent decline in earnings for the top 1% during the last three recessions.

CONCLUSIONS

- Idiosyncratic shocks: During recessions
 - Top half of the shock distribution gets compressed.
 - Bottom half gets wider.
 - \blacktriangleright \Rightarrow Shock distributions become more negatively skewed.
- Substantial predictable component of fortunes over the business cycle.
- Very large and persistent decline in earnings for the top 1% during the last three recessions.

A (10) A (10) A (10)

CONCLUSIONS

- Idiosyncratic shocks: During recessions
 - Top half of the shock distribution gets compressed.
 - Bottom half gets wider.
 - \blacktriangleright \Rightarrow Shock distributions become more negatively skewed.
- Substantial predictable component of fortunes over the business cycle.
- Very large and persistent decline in earnings for the top 1% during the last three recessions.

CURRENT AND FUTURE WORK

- The Distribution of Lifetime Incomes (with Greg Kaplan)
- The Lifecycle of Top 1 Percenters (with Greg Kaplan)
- Worker Betas (with Sam Schulhofer Wohl and Serdar Ozkan)
- Earnings Dynamics (with Serdar Ozkan and Fatih Karahan)
- Worker and Firm Effects in Increasing Inequality (with Nick Bloom)

MALE UNEMPLOYMENT RATE

Guvenen, Ozkan, Song

・ロト ・ 四ト ・ ヨト ・ ヨト …

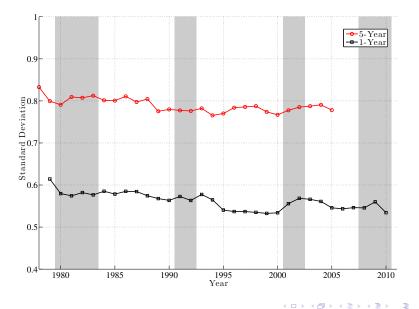
Question: Is earnings inequality countercyclical?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Change in P90-50 and P50-10 of $log(\mathbf{Y}^{i})$

Question: Is earnings inequality countercyclical?

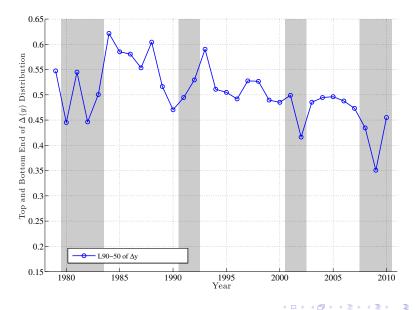
- Answer: Yes.
- Question: How about the distribution of income growth—cyclical too?


▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Question: Is earnings inequality countercyclical?

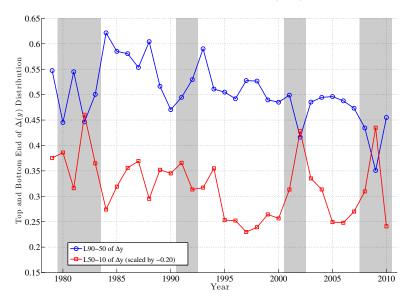
- Answer: Yes.
- Question: How about the distribution of income growth—cyclical too?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで


VARIANCE OF Δy^i and $\Delta_5 y^i$

Guvenen, Ozkan, Song

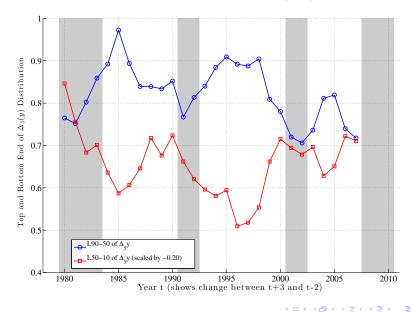
April 28, 2013 55 / 65


P90-P50 and P50-P10 of $\Delta \text{Log}(Y^i)$

Guvenen, Ozkan, Song

April 28, 2013 56 / 65

P90-P50 and P50-P10 of $\Delta \text{Log}(Y^i)$


Guvenen, Ozkan, Song

Cyclical Income Risk

로 ▶ ◀ 볼 ▶ 볼 ∽ ९.୦ April 28, 2013 57 / 65

< 🗇 🕨 <

P90-P50 and P50-P10 of $\Delta_5 \text{LOG}(Y^i)$

Guvenen, Ozkan, Song

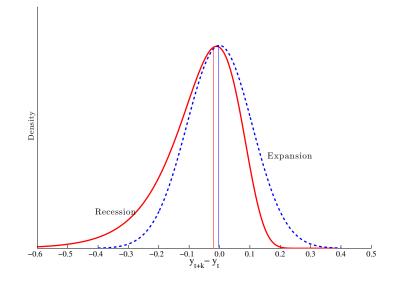
April 28, 2013 58 / 65

Question: Is cross-sectional inequality countercyclical?

- Answer: Yes.
- Question: How about the distribution of income growth—cyclical too?
 - Answer:
 - * The dispersion of income growth rates does not appear to be cyclical.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

* BUT: left-skewness is very much countercyclical.


Question: Is cross-sectional inequality countercyclical?

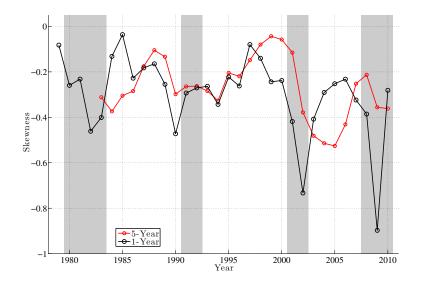
- Answer: Yes.
- Question: How about the distribution of income growth—cyclical too?
 - Answer:
 - * The dispersion of income growth rates does not appear to be cyclical.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

* BUT: left-skewness is very much countercyclical.

RECESSIONS: SHOCK TO SKEWNESS?

Guvenen, Ozkan, Song

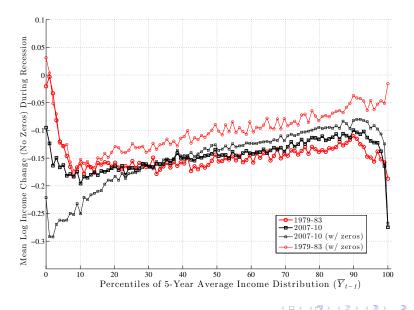

April 28, 2013 60 / 65

2

< E

< (T) > <

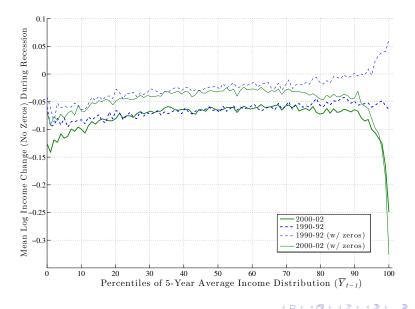
Skewness of $\Delta \log(Y^i)$ and $\Delta_5 \log(Y^i)$


Guvenen, Ozkan, Song

April 28, 2013 61 / 65

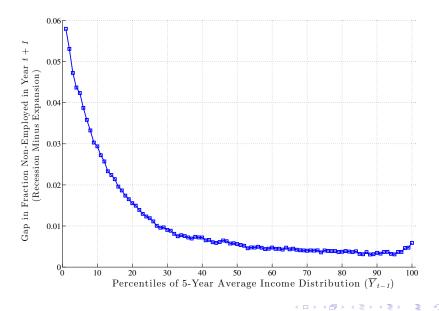
2

・ロト ・ 四ト ・ ヨト ・ ヨト


Full vs. Intensive Margin Comparison

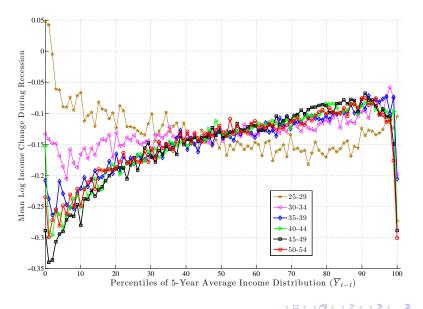
Guvenen, Ozkan, Song

April 28, 2013 62 / 65


Full vs. Intensive Margin Comparison

Guvenen, Ozkan, Song

April 28, 2013 63 / 65


CHANGE IN PROB. OF FULL-YEAR NONEMPLOYMENT

Guvenen, Ozkan, Song

April 28, 2013 64 / 65

VARIATION BY AGE: GREAT RECESSION (2007–10)

Guvenen, Ozkan, Song

April 28, 2013 65 / 65